Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
I think it would be B because it is matter, since it has atoms, and it contains subatomic particles, which are smaller than atoms
Answer:
0.2cm towards the retina.
Explanation:
the focal length of the frog eye is
(1/f) = (1/10) + (1/0.8)
f = 0.74cm
Since the distance of the object is 15cm Hence
(1/0.74) = (1/15) + (1/V)
V = 0.78cm
Therefore the distance the retina is to move is
0.78cm - 0.8cm = 0.02cm towards the retina.
Answer:
the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time
Explanation:
Since airplane is moving horizontally with constant speed v
so when object is dropped from the plane then the speed of the object will be same as that of the speed of the airplane
so we can say that two object when dropped after some interval of time then they always lie in same vertical line
now we know that they both have same acceleration in vertical line so the motion of two objects relative to each other in vertical direction is always uniform motion because they have no acceleration with respect to each other
So the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time