Answer:
Compression of hydrogen gas within the container.
Answer:
P1 = 2.5ATM
Explanation:
V1 = 28L
T1 = 45°C = (45 + 273.15)K = 318.15K
V2 = 34L
T2 = 35°C = (35 + 273.15)K = 308.15K
P1 = ?
P2 = 2ATM
applying combined gas equation,
P1V1 / T1 = P2V2 / T2
P1*V1*T2 = P2*V2*T1
Solving for P1
P1 = P2*V2*T1 / V1*T2
P1 = (2.0 * 34 * 318.15) / (28 * 308.15)
P1 = 21634.2 / 8628.2
P1 = 2.5ATM
The initial pressure was 2.5ATM
Q is unlike K value it describes the reaction that is not at equilibrium.
by considering this reaction:
aA+ bB⇄ cC
and our reaction is:
Br2 + Cl2 ⇄ 2 BrCl
According to Q low:
Q= concentration of products/concentration of reactants
but this equation in the gaseous or aqueous states only.
∴ Q = [BrCl]^2 / [Br2] [Cl2]
and we have [Br2] = 0.00366 m [Cl2]= 0.000672 m [BrCl] = 0.00415 m
by substitution:
= [0.00415]^2 / ( [0.00366] * [0.000672])
∴ Q = 7
CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O
n(CaCO₃)=m(CaCO₃)/M(CaCO₃)
n(CaCO₃)=13.00/100.09=0.1299 mol
Δm=13.00+52.65-60.32=5.33 g
m(CO₂)=5.33 g
n(CO₂)=5.33/44.01=0,1211 mol
w=0.1211/0.1299=0,9323 (93.23%)
Answer:
The awnser is A.
Explanation:
I got it right on edgenuity. If im wrong sorry ;-;