Answer:
B. there would be a global rise in temperatures
Hence, global warming
Explanation:
hope this helped! :D
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick

whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that
Answer:
he maximum frequency occurs when the denominator is minimum
f’= f₀ 
Explanation:
This is a doppler effect exercise, where the sound source is moving
f = fo
when the source moves towards the observer
f ’=f_o
Alexandrian source of the observer
the maximum frequency occurs when the denominator is minimum, for both it is the point of maximum approach of the two objects
f’= f₀ 
The question is incomplete. Here is the entire question.
A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?
Answer: Δx = - 42m
Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.
For this "type" of motion, displacement (Δx) can be determined by:

is the initial velocity
a is acceleration and can be positive or negative, according to the referential.
For Referential, let's assume rightward is positive.
Calculating displacement:


= - 42
Displacement of the boat for t=6.0s interval is
= - 42m, i.e., 42 m to the left.
Answer:
Explanation:
Total mass of cable m = 190 x .402 = 76.38 lb
moment of inertial due to this cable = m r²
= 76.38 x (14/12)²
= 103.96 lb ft²
moment of inertia of empty spoon
= mR² where R is radius of gyration
= 65 x (11 / 12 )²
= 54.61 lb ft²
Total moment of inertia I = 158.57 lb ft²
Net force applied = force applied - frictional force
= 33 - 15 = 18 lb
= 18 x 32 poundal
= 576 poundal
Torque applied = force x radius
= 576 x 14/12
= 672 unit
Angular acceleration = torque / total moment of inertia
= 672 / 158.57
= 4.238 radian / s²