Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling 
 the initial momentum of object X and 
 the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

 
        
                    
             
        
        
        
Answer:
Explanation:
Given that,
A lady falling has a final velocity of 4m/s
v = 4m/s
Mass of the lady is 60kg.
m = 60kg
Using conservation of energy, the potential energy of the body from the point where the lady is dropping is converted to the final kinetic energy of the lady.
Therefore,
P.E = K.E(final) = ½mv²
P.E = ½ × 60 × 4²
P.E = 480 J.
 
        
             
        
        
        
Answer:
a)  f = 615.2 Hz      b)  f = 307.6 Hz
Explanation:
The speed in a wave on a string is
          v = √ T / μ
also the speed a wave must meet the relationship
           v = λ f
            
Let's use these expressions in our problem, for the initial conditions
             v = √ T₀ /μ
              √ (T₀/ μ) = λ₀ f₀
now it indicates that the tension is doubled
          T = 2T₀
           √ (T /μ) = λ f
           √( 2To /μ) = λ f
          √2  √ T₀ /μ = λ f
 we substitute
          √2 (λ₀ f₀) = λ f
if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change
            λ₀ = λ
            f = f₀ √2
            f = 435 √ 2
            f = 615.2 Hz
b) The tension is cut in half
          T = T₀ / 2
          √ (T₀ / 2muy) =  f = λ f
           √ (T₀ / μ)  1 /√2 = λ f
            fo / √2 = f
            f = 435 / √2
            f = 307.6 Hz
Traslate 
La velocidad en una onda en una cuerda es
          v = √ T/μ
ademas la velocidad una onda debe cumplir la relación
           v= λ f  
            
Usemos estas expresión en nuestro problema, para las condiciones iniciales
             v= √ To/μ
              √ ( T₀/μ) = λ₀ f₀
ahora nos indica que la tensión se duplica
          T = 2T₀
           √ ( T/μ) = λf
           √ ) 2T₀/μ = λ f
          √ 2 √ T₀/μ = λ f
          
substituimos  
          √2    ( λ₀ f₀)  =  λ f
si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia
                  λ₀ =  λ
            f = f₀ √2
            f = 435 √2
            f = 615,2 Hz
b)  La tension se reduce a la mitad
          T = T₀/2    
          RA ( T₀/2μ)  =  λ  f
           Ra(T₀/μ) 1/ra 2  =  λ f
            fo /√ 2 = f
            f = 435/√2
            f = 307,6 Hz 
 
        
             
        
        
        
Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave. 
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!