Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change.
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
Answer:
The angular velocity of Ball A will be greater than the angular velocity of Ball B when they reach the top of the hill.
Explanation:
Angular velocity can be defined as how fast an object rotates relative to a given point or frame of reference.
The question said the hill encountered by Ball A is frictionless, so Ball A will continue to rotate at the same rate it started with even when it reached the top of the hill.
Ball B on the other hand rolls without slipping over its hill, i.e there's friction to slow down its rotational motion which thus reduces how fast Ball B will rotate at the top of the hill