First thing plot a right angle with angle of elevation of 35degrees as shown in figure then use SOHCAHTOA.
Ay/Helicopter = sin 35
Ay = 86 sin 35 = 36.8237
Ax/Helicopter = cos 35
Ax = 86 cos 35 = 77.7175
Note: I ignore the negative signs coz they signify direction
Would presume the energy as kinetic energy.
E = (1/2)*mv²
But m = 0.05kg, velocity here = 0.70c, where c is the speed of light ≈ 3* 10⁸ m/s
Ke = (1/2)*mv² = 0.5*0.05*(0.7*<span>3* 10⁸)</span>² = 1.1025 * 10¹⁵ Joules
There is no exact match from the options.
Answer:
Answered
Explanation:
a) Two balls are at a distance of L/2 from the axis of rotation and one block at the center. ( center of rod).
therefore,


b) two balls at a distance L/4 at the from the axis and 1 ball at a distance 3L/4 from the from the axis.

= 
Answer:
F = - 50 N
Hence, the magnitude of resultant force is 50 N and its direction is leftwards.
Explanation:
The magnitude of the resultant force is always equal to the sum of all forces. While, the direction of resultant force will be equal to the direction of the force with greater magnitude:

considering right direction to be positive:
F₁ = Force applied on right rope = 150 N
F₂ = Force applied on left rope = 200 N
Therefore, the resultant force can be found by using these values in equation:

<u>F = - 50 N</u>
<u>Hence, the magnitude of resultant force is 50 N and its direction is leftwards.</u>
To
solve this problem, we assume that the wavelength of the light in air is 500
nanometers.
For this case we
only need the refractive index of the polystyrene. For an antireflective
coating, we need a quarter of wave thickness at the wavelength in the air. Which
means that the antireflective coating needs to be as thick as 1/4 of the
wavelength, divided by the coating’s refractive index. This is expressed
mathematically in the form:
x = λ / (4 * n)
where,
x = thickness
λ = wavelength
of light
n = index of
refraction of polystyrene
Substituting:
x = 500 nm / (4
* 1.49)
x = 500 nm / 5.96
x = 83.90 nm