answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
1 year ago
11

At its lowest setting a centrifuge rotates with an angular speed of ω1 = 250 rad/s. When it is switched to the next higher setti

ng it takes t = 9.5 s to uniformly accelerate to its final angular speed ω2 = 750 rad/s.
A) Calculate the angular acceleration of the centrifuge α1 in rad/s2 over the time interval t.

B) Calculate the total angular displacement (in radians) of the centrifuge, Δθ, as it accelerates from the initial to the final speed.
Physics
1 answer:
dalvyx [7]1 year ago
8 0

Answer:

Part(a): The angular acceleration is 5.63~rad~s^{-2}.

Part(b): The angular displacement is 2629~rad.

Explanation:

Part(a):

If \omega_{1},~\omega_{2}~and~\alpha be the initial angular speed, final angular speed and angular acceleration  of the centrifuge respectively, then from rotational kinematic equation, we can write

\alpha = \dfrac{\omega_{2} - \omega_{1}}{t}......................................................(I)

where 't' is the time taken by the centrifuge to increase its angular speed.

Given, \omega_{i} = 250~rad~s^{-1}, \omega_{f} = 750~rad~s^{-1} and t = 9.5~s. From equation (I), the angular acceleration is given by

\alpha = \dfrac{750 - 250}{9.5}~rad~s^{-2} = 5.63~rad~s^{-2}

Part(b):

Also the angular displacement (\Delta \theta) can be written as

&&\Delta \theta = \omega_{1}~t + \dfrac{1}{2}\alpha~t^{2}\\&or,& \Delta \theta = (250 \times 9.5 + \dfrac{1}{2} \times 5.63 \times 9.5^{2})~rad = 2629~rad

You might be interested in
Approximately 1.000 g each of four gasses H2, Ne, Ar, and Kr are placed in a sealed container all under1.5 atm of pressure. Assu
Vera_Pavlovna [14]

Answer:

The partial pressure of H2 is 0.375 atm

The partial pressure of Ne is also 0.375 atm

Explanation:

Mass of H2 = 1 g

Mass of Ne = 1 g

Mass of Ar = 1 g

Mass of Kr = 1 g

Total mass of gas mixture = 1 + 1 + 1 + 1 = 4 g

Pressure of sealed container = 1.5 atm

Partial pressure of H2 = (mass of H2/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

Partial pressure of Ne = (mass of Ne/total mass of gas mixture) × pressure of sealed container = 1/4 × 1.5 = 0.375 atm

7 0
2 years ago
On a horizontal frictionless surface a mass M is attached to two light elastic strings both having length l and both made of the
EastWind [94]

Answer:

ω = √(2T / (mL))

Explanation:

(a) Draw a free body diagram of the mass.  There are two tension forces, one pulling down and left, the other pulling down and right.

The x-components of the tension forces cancel each other out, so the net force is in the y direction:

∑F = -2T sin θ, where θ is the angle from the horizontal.

For small angles, sin θ ≈ tan θ.

∑F = -2T tan θ

∑F = -2T (Δy / L)

(b) For a spring, the restoring force is F = -kx, and the frequency is ω = √(k/m).  (This is derived by solving a second order differential equation.)

In this case, k = 2T/L, so the frequency is:

ω = √((2T/L) / m)

ω = √(2T / (mL))

6 0
2 years ago
Monitoring systems may also use ____, which are devices that respond to a stimulus (such as heat, light, or pressure) and genera
KIM [24]
The answer is:
__________________________________________________
         "sensors"
__________________________________________________
       "<span>Monitoring systems may also use ___<u>sensors</u>___, which are devices that respond to a stimulus (such as heat, light, or pressure) and generate an electrical signal that can be measured or interpreted."
_________________________________________________</span>
6 0
2 years ago
What was the change in internal energy (chemical energy plus thermal energy) of the person pulling the block?
enyata [817]

The historical method includes what steps?


7 0
1 year ago
A 0.25-m string, vibrating in its sixth harmonic, excites a 0.96-m pipe that is open at both ends into its second overtone reson
Andrews [41]

Answer:

option D

Explanation:

given,

length of the pipe, L = 0.96 m

Speed of sound,v = 345 m/s

Resonating frequency when both the end is open

f = \dfrac{nv}{2L}

n is the Harmonic number

2nd overtone = 3rd harmonic

so, here n = 3

now,

f = \dfrac{3\times 345}{2\times 0.96}

f = 540 Hz

The common resonant frequency of the string and the pipe is closest to 540 Hz.

the correct answer is option D

7 0
2 years ago
Other questions:
  • The buoyant force on an object fully submerged in a liquid depends on (select all that apply)
    13·1 answer
  • A parachute works because the canvas of the parachute is acted upon by __________.
    5·2 answers
  • If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The vol
    13·1 answer
  • A bird flying at a height of 12 m doubles its speed as it descends to a height of 6.0 m. The kinetic energy has changed by a fac
    15·1 answer
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • Compute the mean and maximum velocities for a liquid with a flow rate of 20 L/min in a 1.5-in nominal diameter sanitary pipeline
    8·1 answer
  • Study the free body diagram above. Which scenario below can best be described with this free body diagram? A. a cup is at rest o
    11·1 answer
  • An amusement park ride consists of airplane-shaped cars attached to steel rods. Each rod has a length of 15m and a cross-section
    6·1 answer
  • A car travels around an oval racetrack at constant speed. The car is accelerating:________.
    11·1 answer
  • The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.40 V is across it at a freq
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!