answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
2 years ago
12

A permeability test was run on a compacted sample of dirty sandy gravel. The sample was 175 mm long and the diameter of the mold

175 mm. In 90 s the discharge under a constant head of 38 em was 405 cm3 The sample had a dry mass of 4950 g and its Ps was 2710 kg!m3 Calculate (a) the coefficient of permeability, (b) the seepage velocity, and (c) the discharge velocity during the test.
Physics
1 answer:
LUCKY_DIMON [66]2 years ago
8 0

Answer:

(a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

Explanation:

Given that,

Length = 175 mm

Diameter = 175 mm

Time = 90 sec

Volume= 405 cm³

We need to calculate the discharge

Using formula of discharge

Q=\dfrac{V}{t}

Put the value into the formula

Q=\dfrac{405}{90}

Q=4.5\ cm^3/s

(a). We need to calculate the coefficient of permeability

Using formula of coefficient of permeability

Q=kiA

k=\dfrac{Q}{iA}

k=\dfrac{Ql}{Ah}

Where, Q=discharge

l = length

A = cross section area

h=constant head causing flow

Put the value into the formula

k=\dfrac{4.5\times175\times10^{-1}}{\dfrac{\pi(175\times10^{-1})^2}{4}\times38}

k=8.6\times10^{-3}\ cm/s

The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(c). We need to calculate the discharge velocity during the test

Using formula of discharge velocity

v=ki

v=\dfrac{kh}{l}

Put the value into the formula

v=\dfrac{8.6\times10^{-3}\times38}{17.5}

v=0.0187\ cm/s

The discharge velocity during the test is 0.0187 cm/s.

(b). We need to calculate the volume of solid in the ample

Using formula of volume

V_{s}=\dfrac{M_{s}}{V_{s}}

Put the value into the formula

V_{s}=\dfrac{4950\times10^{-3}}{2710}

V_{s}=1826.56\ cm^3

We need to calculate the volume of the soil specimen

Using formula of volume

V=A\times L

Put the value into the formula

V=\dfrac{\pi(17.5)^2}{4}\times17.5

V=4209.24\ cm^3

We need to calculate the volume of the voids

V_{v}=V-V_{s}

Put the value into the formula

V_{v}=4209.24-1826.56

V_{v}=2382.68\ cm^3

We need to calculate the seepage velocity

Using formula of velocity

Av=A_{v}v_{s}

v_{s}=\dfrac{Av}{A_{v}}

v_{s}=\dfrac{V}{V_{v}}\times v

Put the value into the formula

v_{s}=\dfrac{4209.24}{2382.68}\times0.0187

v_{s}=0.0330\ cm/s

The seepage velocity is 0.0330 cm/s.

Hence, (a). The coefficient of permeability is 8.6\times10^{-3}\ cm/s.

(b). The seepage velocity is 0.0330 cm/s.

(c). The discharge velocity during the test is 0.0187 cm/s.

You might be interested in
When laser light of wavelength 632.8 nm passes through a diffraction grating, the first bright spots occur at ± 17.8 ∘ from the
bazaltina [42]
Look on this website http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html
4 0
2 years ago
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
The speed v of a sound wave traveling in a medium that has bulk modulus b and mass density ρ (mass divided by the volume) is v=b
PilotLPTM [1.2K]

As it is given that Bulk modulus  and density related to velocity of sound

v = \sqrt{\frac{B}{\rho}}

by rearranging the equation we can say

B = \rho * v^2

now we need to find the SI unit of Bulk modulus here

we can find it by plug in the units of density and speed here

B = \frac{kg}{m^3} * (\frac{m}{s})^2

so SI unit will be

B = \frac{kg}{m* s^2}

SO above is the SI unit of bulk Modulus

3 0
2 years ago
You are participating in a NASA traineeship, working with a group planning a new landing on Mars. Your supervisor has come up wi
aivan3 [116]

Answer:

h=17005.8 km

Explanation:

Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass M=6.39\times10^{23} kg at a distance r will be:

F=\frac{GMm}{r^2}

where G=6.67\times10^{-11}Nm^2/kg^2 is the gravitational constant.

This force is the centripetal force the satellite experiments, so we can write:

F=ma_{cp}=mr\omega^2=mr(\frac{2\pi}{T})^2=\frac{4\pi^2mr}{T^2}

Putting all together:

\frac{GMm}{r^2}=\frac{4\pi^2mr}{T^2}

which means:

r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}

Which for our values is:

r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km

Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km , which leaves us with:

h=r-R=20395.3km-3389.5 km=17005.8 km

6 0
2 years ago
Submit Quiz
kkurt [141]

Explanation:

the question is unanswerable

7 0
2 years ago
Other questions:
  • Which of the following would increase the strength of an electromagnet ?
    5·2 answers
  • A heat pump absorbs heat from the cold outdoors at 3°c and supplies heat to a house at 20°c at a rate of 30,000 kj/h. if the p
    9·1 answer
  • A top of rotational inertia 4.0 kg m2 receives a torque of 2.4 nm from a physics professor. the angular acceleration of the body
    12·1 answer
  • The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
    10·2 answers
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • An atom of neon has a radius rNe = 38. pm and an average speed in the gas phase at 25°C of 350.⁢/ms. Suppose the speed of a neon
    10·1 answer
  • An end of a light wire rod is bent into a hoop of radius r. The straight part of the rod has length l; a ball of mass M is attac
    10·1 answer
  • Determine the values of mm and nn when the following average distance from the Sun to the Earth is written in scientific notatio
    5·1 answer
  • Two particles carrying charges q1 and q2 are separated by a distance r and exert an electric force F⃗ E on each other. If q1 is
    13·1 answer
  • Two moles of an ideal gas at 3.0 atm and 10 °C are heated up to
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!