Answer:
The total amount of Au is $ 
Explanation:
Given that,
Mass of 1.0 ml of Au
Total volume of water in oceans 
We need to calculate the volume in ml
Using given volume


We need to calculate the total mass of Au
Using given data


So, The total mass of Au is 
The mass will be in ounce,


The total amount of the Au Will be


Hence, The total amount of Au is $ 
The final temperature of the copper is 59.0. The specific heat capacity of copper is 0.38 j/g -k
Answer:
It take 3.5 *10² min
Explanation:
Step 1: Data given
Mass of the nickel = 29.6 grams
4.7A
Step 2: The balanced equation
Ni2+ (aq- +2e- → Ni(s)
Step 3: Calculate time
W = (ItA)/(n*F)
⇒ W = weight of plated metal in grams = 29.6
⇒ I = current in coulombs per second.
= 4.7
⇒ t = time in seconds.
⇒ A = atomic weight of the metal in grams per mole. = 58.69
⇒ n = valence of dissolved metal in solution in equivalents per mole. = 2
⇒ F = Faraday's constant in coulombs per equivalent. F = 96,485.309 coulombs/equivalent.
29.6 = (4.7 * t * 58.69)/(2*96485309)
t = 20707 seconds
t =345 minutes = 3.5 * 10² min
It take 3.5 *10² min
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Answer:
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)
Explanation:
The standard enthalpy of formation (ΔH°f) is the energy involved in the formation of 1 mole of a substance from its elements in their most stable states. The chemical equation for the formation of SrCO₃(s) is the following.
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)