Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
Answer:
The following equation can be used.
(32°F − 32) × 5/9=C
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg