Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Answer : The value of ΔH for this reaction is, -1516 kJ/mol
Explanation :
First we have to calculate the moles of 



Now we have to calculate the ΔH for this reaction.
As, 2.5 mole of
react to gives heat = -3790 kJ
So, 1 mole of
react to gives heat = 
= -1516 kJ/mol
Therefore, the value of ΔH for this reaction is, -1516 kJ/mol
Answer:
A. psychographic lifestyle segmentation
Explanation:
Psychographic lifestyle segmentation -
It refers to the distribution or classification method , where the consumers of a particular goods and services are classified into particular groups , depending on the psychological characteristics of the consumers , is referred to as psychographic lifestyle segmentation .
The segmentation take care of the consumers celief , priority , va;ues , decision - making process , lifestyle .
The method enables to market the goods and services in a better manner , nd increases the profit of the company .
Hence , from the given scenario of the question ,
The correct option is A. psychographic lifestyle segmentation .
Answer:
B) irreversible process
Explanation:
The process given here is irreversible.
I believe the correct answer true. According to the law of conservation of mass, in a chemical reaction the total starting mass of all the reactants equals the total final mass of all the products. This law states that mass cannot be created or be destroyed. So, the total mass that goes in a process should be equal to the mass that goes out the process. This is true for chemical reactions and physical processes. It is Antoine Lavoisier who described this and is a basic principle used in physics and in chemistry. Mass, unlike energy, cannot be transformed to any form so however the transformation happens the mass should be constant.