Daguerreotype is defined as the
first practical photographic process which was introduced in Paris on January
7, 1839. To make the image permanent, Daguerre used salt solution. The result
of his introduced process is a finely defined image with surface which is
delicate. The major benefit of daguerreotype is if the images are correctly
preserved, the pictures could last forever. Aside from this, since it produces superior
quality of outline, it is thus suitable for portraitures.
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:
</span>
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>
Answer
given,
Mass of Kara's car = 1300 Kg
moving with speed = 11 m/s
time taken to stop = 0.14 s
final velocity = 0 m/s
distance between Lisa ford and Kara's car = 30 m
a) change in momentum of Kara's car
Δ P = m Δ v


Δ P = - 1.43 x 10⁴ kg.m/s
b) impulse is equal to change in momentum of the car
I = - 1.43 x 10⁴ kg.m/s
c) magnitude of force experienced by Kara
I = F x t
I is impulse acting on the car
t is time
- 1.43 x 10⁴= F x 0.14
F = -1.021 x 10⁵ N
negative sign represents the direction of force
Answer: E= KQ/r^2
Explanation: An electric field is a region where an electric charge(positive or negative ) will experience a force.
The magnitude of an electric field E, at a point is given by Coulombs law as
E/ F/q
Where F= Coulombs force exertedon the charge and q= electric charge
E= F/q=(KQq)/r^2q
E=KQ/r^2