answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
2 years ago
8

What voltage is delivered to a 120-volt/5,000-watt load that is fed with #10 awg wire (1.24 ohms/1,000 feet) and located 750 fee

t from the 120-volt source? (round the final answer to two decimal places.)?
Physics
1 answer:
Zepler [3.9K]2 years ago
4 0

Answer:

It is given that power = 5000 W for 120 V and resistance is 1.24\Omega per 1000 ft of wire. The wire is 750 ft away from 120 V source. We need find the voltage delivered to this load.

Power, P=Voltage(E)\times Current(I)

\Rightarrow I=\frac{P}{E}=\frac{5000W}{120V}=41.67 A

Resistance of 750 ft wire, =R=\frac{1.24\Omega}{1000 ft}\times750 ft=0.93\Omega

Using Ohm's Law:

Voltage delivered to the load, V=IR

\Rightarrow V=41.67A\times0.93\Omega=38.75 V


You might be interested in
Assume that a uniform magnetic field is directed into thispage. If an electron is released with an initial velocity directedfrom
Feliz [49]

Answer:

B). to the right

Explanation:

Since the direction of magnetic field is into the page

So here we know that

B = B_o(-\hat k)

now the velocity is from bottom to top

so we have

v = v_o \hat j

now the force on the moving charge is given as

\vec F = q(\vec v \times \vec B)

now we have

\vec F = (-e)(v_o \hat j \times B_o(-\hat k))

\vec F = e v_o B \hat i

so force will be towards Right

7 0
2 years ago
To exercise, a man attaches a 4.0 kg weight to the heel of his foot. When his leg is stretched out before him, what is the torqu
Masja [62]

Answer:

B. τ = 16 Nm

Explanation:

In order to find the torque exerted by the weight attached to the heel of man's foot, when his leg is stretched out. We use following formula:

τ = Fd

here,

τ = Torque = ?

F = Force exerted by the weight = Weight = mg

F = mg = (4 kg)(10 m/s²) = 40 N

d = distance from knee to weight = 40 cm = 0.4 m

Therefore,

τ = (40 N)(0.4 m)

<u>B. τ = 16 Nm</u>

8 0
2 years ago
If period of the pendulum in preceding sample problem were 24s how tall would the tower be ?
frutty [35]

Answer:

So length of pendulum is 143.129 m

Explanation:

We have given period of simple pendulum is 2 sec

We have to find the length of simple pendulum

Let the length of pendulum is l

Acceleration due to gravityg=9.8m/sec^2 is

Time period is given by T=2\pi \sqrt{\frac{l}{g}}

So 24=2\times 3.14\times  \sqrt{\frac{l}{9.8}}

\sqrt{\frac{l}{9.8}}=3.821

Squaring both side

{\frac{l}{9.8}}=14.60

l =143.129 m

So length of pendulum is 143.129 m

8 0
2 years ago
Read 2 more answers
The minute hand of a wall clock measures 16 cm from its tip to the axis about which it rotates. The magnitude and angle of the d
olya-2409 [2.1K]

Answer:

Explanation:

Given

Minute hand length =16 cm

Time at a quarter after the hour to half past i.e. 1 hr 45 min

Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270

|r|=\frac{3\times 2\pi r}{4}=75.408 cm

Angle =270^{\circ}

(c)For the next half hour

Effectively it has covered 2 revolution and a quarter

|r|=\frac{2\pi r}{4}=25.136 cm

angle turned =90^{\circ}

(f)Hour after that

After an hour it again comes back to its original position thus displacement is same =25.136

Angle turned will also be same i.e. 90 ^{\circ}

7 0
2 years ago
A 0.20-kg object attached to the end of a string swings in a vertical circle (radius = 80 cm). at the top of the circle the spee
gayaneshka [121]

Answer:

Tension in the string at this position: 3.1 N.

Explanation:

Convert the radius of the circle to meters:

r = 80\;\text{cm} = 0.80\;\text{m}.

What's the net force on the object?

The object is in a circular motion. As a result,

\displaystyle \Sigma F = \frac{m\cdot v^{2}}{r},

where

  • \Sigma F is the net force on the object,
  • m is the mass of the object,
  • v is the velocity of the object, and
  • r is the radius of the circular motion.

For this object,

\displaystyle \Sigma F = \frac{0.20\times {4.5}^{2}}{0.80} = 5.0625\;\text{N}.

The output unit of net force should be standard if the unit for mass, velocity, and radius are all standard. The net force shall always point towards the center. In this case the net force points downwards.

What are the forces on this object?

There are two forces on the object at this moment:

  • Weight, W, which points downwards. W = m\cdot g = 0.20\times 9.81 = 1.962\;\text{N}.
  • Tension, T, which also points downwards. The size of the tension force needs to be found.

What's the size of the tension force?

Gravity and tension points in the same direction. The size of their resultant force is the sum of the two forces. In other words,

\Sigma F = T + W.

T = \Sigma F - W = 5.0625 - 1.962 = 3.1.

All three values in this question are given with two sig. fig. Round the value of T to the same number of significant figures.

4 0
2 years ago
Other questions:
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • A car possesses 20,000 units of momentum. what would be the car's new momentum if ... its velocity was doubled?
    12·1 answer
  • An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°C
    8·1 answer
  • Richard needs to fly from san diego to halifax, nova scotia and back in order to give an important talk about mathematics. on th
    6·2 answers
  • The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
    7·1 answer
  • Listed following are three possible models for the long-term expansion (and possible contraction) of the universe in the absence
    13·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • The Bernoulli equation is valid for steady, inviscid, incompressible flows with a constant acceleration of gravity. Consider flo
    10·1 answer
  • A 10 m long high tension power line carries a current of 20 A perpendicular to Earth's magnetic field of 5.5 x10⁻⁵ T. What is th
    12·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!