answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
9

An electric air heater consists of a horizontal array of thin metal strips that are each 10 mm long in the direction of an airst

ream that is in parallel flow over the top of the strips. Each strip is 0.2 m wide, and 25 strips are arranged side by side, forming a continuous and smooth surface over which the air flows at 2 m/s. During operation, each strip is maintained at 500°C and the air is at 25°C. What is the rate of convection heat transfer from the first strip? The fifth strip? The tenth strip? All the strips?
Physics
1 answer:
sweet-ann [11.9K]2 years ago
6 0

Answer:

see explanation below

Explanation:

Given that,

T_1 = 500°C

T_2 = 25°C

d = 0.2m

L = 10mm = 0.01m

U₀ = 2m/s

Calculate average temperature

\\T_{avg} = \frac{T_1 + T_2}{2} \\\\T_{avg} = \frac{500 + 25}{2} \\\\T_{avg} = 262.5

262.5 + 273

= 535.5K

From properties of air table A-4 corresponding to T_{avg} = 535.5K \approx 550K

k = 43.9 × 10⁻³W/m.k

v = 47.57 × 10⁻⁶ m²/s

P_r = 0.63

A)

Number for the first strips is equal to

R_e_x = \frac{u_o.L}{v}

R_e_x = \frac{2\times 0.01}{47.57 \times 10^-^6 }\\\\= 420.4

Calculating heat transfer coefficient from the first strip

h_1 = \frac{k}{L} \times 0.664 \times R_e_x^1^/^2 \times P_r^1^/^3

h_1 = \frac{43.9 \times 10^-^3}{0.01} \times 0.664\times420 \times 4^1^/^2 \times 0.683^1^/^3\\\\= 52.6W/km^2

The rate of convection heat transfer from the first strip is

q_1 = h_1\times(L\times d)\times(T_1 - T_2)\\\\q_1 = 52.6 \times (0.01\times0.2)\times(500-25)\\\\q_1 = 50W

The rate of convection heat transfer from the fifth trip is equal to

q_5 = (5 \times h_o_-_5-4\times h_o_-_4) \times(L\times d)\times (T_1 -T_2)

h_o_-_5 = \frac{k}{5L} \times 0.664 \times (\frac{u_o\times 5L}{v} )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.05} \times0.664\times (\frac{2 \times 0.05}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 25.5W/Km^2

Calculating h_o_-_4

h_o_-_4 = \frac{k}{4L} \times 0.664 \times (\frac{u_o\times 4L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.04} \times0.664\times (\frac{2 \times 0.04}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 26.3W/Km^2

The rate of convection heat transfer from the tenth strip is

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)

h_o_-_1_0 = \frac{k}{10L} \times 0.664 \times (\frac{u_o\times 10L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.1} \times0.664\times (\frac{2 \times 0.1}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 16.6W/Km^2

Calculating

h_o_-_9 = \frac{k}{9L} \times 0.664 \times (\frac{u_o\times 9L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.09} \times0.664\times (\frac{2 \times 0.09}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 17.5W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_1_0 = (10 \times h_o_-_1_0-9\times h_o_-_9) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (10 \times 16.6 -9\times 17.5) \times(0.01\times 0.2)\times (500 -25)\\\\=8.1W

The rate of convection heat transfer from 25th strip is equal to

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)

Calculating h_o_-_2_5

h_o_-_2_5 = \frac{k}{25L} \times 0.664 \times (\frac{u_o\times 25L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.25} \times0.664\times (\frac{2 \times 0.25}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.5W/Km^2

Calculating h_o_-_2_4

h_o_-_2_4 = \frac{k}{24L} \times 0.664 \times (\frac{u_o\times 24L}{v } )^1^/^2\times Pr^1^/^3\\\\= \frac{43.9\times10^-^3}{0.24} \times0.664\times (\frac{2 \times 0.24}{47.57 \times 10^-^6} )^1^/^2\times 0.683^1^/^3\\\\= 10.7W/Km^2

Calculating the rate of convection heat transfer from the tenth strip

q_2_5 = (25 \times h_o_-_2_5-24\times h_o_-_2_4) \times(L\times d)\times (T_1 -T_2)\\\\q_1_0 = (25 \times 10.5 -24\times 10.7) \times(0.01\times 0.2)\times (500 -25)\\\\=5.4W

You might be interested in
A jogger runs 10.0 blocks do east, 5.0 blocks due South, and another two. Zero blocks do east. Assume all blocks are equal size,
Annette [7]

Jogger moves in three displacements

d1 = 10 blocks East

d2 = 5 blocks South

d3 = 2 blocks East

now we can say

total displacement towards East direction will be

d_x = 10 + 2= 12 blocks

Total displacement towards South

d_y = 5 block

now to find the net displacement we can use vector addition

d = \sqrt{d_x^2 + d_y^2}

d = \sqrt{12^2 + 5^2}

d = 13 blocks

<em>so magnitude of net displacement will be equal to 13 blocks</em>

6 0
1 year ago
A satellite completes one revolution of a planet in almost exactly one hour. At the end of one hour, the satellite has traveled
sesenic [268]
Velocity =

(distance between start point and end point, regardless of the route traveled) / (time spent traveling).

That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is

(10) / (3,600) = almost exactly 0.00278 m/s

= 2.78 x 10^-3 m/s.
3 0
2 years ago
Where is the steering nozzle located on a pwc?
Dvinal [7]
At the rear.

PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
3 0
2 years ago
Read 2 more answers
Mickey, a daredevil mouse of mass m , m, is attempting to become the world's first "mouse cannonball." He is loaded into a sprin
Sati [7]

Answer:

  h = v₀² / 2g ,      h = k/4g     x²

Explanation:

In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches

Starting point. Lower compressed spring

              Em₀ = K = ½ m v²

Final point. Highest on the path

             Em_{f} = U = mg h

             

As or no friction the energy is conserved  

              Em₀ =  Em_{f}

              ½ m v₀²² = m g h

             h = v₀² / 2g

We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse

                  ½ k x² = 2 g h

                  h = k/4g     x²

8 0
2 years ago
Read 2 more answers
Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plume
Mamont248 [21]

Answer:

1331.84 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0

s = Displacement = 490 km

a = Acceleration

g = Acceleration due to gravity = 1.81 m/s² = a

From equation of linear motion

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -1.81\times 490000}\\\Rightarrow u=1331.84\ m/s

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km

3 0
2 years ago
Read 2 more answers
Other questions:
  • The energy gaps between the valence and conduction bands are called band gaps. For silicon, the band gap is 1.1 eV; for fused si
    6·1 answer
  • In which of the following examples does the object have both kinetic and potential energy? Select all that apply.
    11·2 answers
  • Calculate the intrapleural pressure if atmospheric pressure is 765 millimeters of mercury, assuming that the subject is at rest
    15·1 answer
  • Water at 298 K discharges from a nozzle and travels horizontally hitting a flat, vertical wall. The nozzle diameter is 12 mm and
    7·1 answer
  • the minute hand on a clock is 9 cm long and travels through an arc of 252 degrees every 42 minutes. To the nearest tenth of a ce
    15·1 answer
  • Carefully consider how the accelerations a1 and a2 are related. Solve for the magnitude of the acceleration, a1, of the block of
    6·1 answer
  • Two buses are driving along parallel freeways that are 5mi apart, one heading east and the other heading west. Assuming that eac
    12·1 answer
  • Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of th
    7·1 answer
  • What type of equilibrium is guaranteed by each condition of equilibrium
    12·1 answer
  • A gas has an initial volume of 24.6 L at a pressure of 1.90 atm and a temperature of 335 K. The pressure of the gas increases to
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!