We can rephrase the statement with a little more specificity in order to understand the answer here.
The mass of the products can never be more than the The mass that is expected.
Answer:
By visiting other households with cats.
Explanation:
This will give Brian a variety of other houses and determine if it is truly cats or just alleries from other items. This is the most direct way to get Brian the answer he is looking for.
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
The partial pressure of NO2 = 0.152 atm
Explanation:
Step 1: Data given
Pressure NO2 = 0.500 atm
Total pressure at equilibrium = 0.674 atm
Step 2: The balanced equation
2NO2(g) → 2NO(g) + O2(g)
Step 3: The initial pressure
pNO2 = 0.500 atm
pNO = 0 atm
p O2 = 0 atm
Step 4: Calculate pressure at the equilibrium
For 2 moles NO2 we'll have 2 moles NO and 1 mol O2
pNO2 = 0.500 - 2x atm
pNO =2x atm
pO2 = xatm
The total pressure = p(total) = p(NO2) + p(NO) + p(O2)
p(total) = (0.500 - 2x) + 2x + x= 0.674 atm
0.500 + x = 0.674 atm
x = 0.174 atm
This means the partial pressure of NO2 = 0.500 - 2*0.174 = 0.152 atm
Answer:
There are 0.09996826 moles per liter of the solution.
Explanation:
Molar mass of HNO3: 63.02
Convert grams to moles
0.63 grams/ 63.02= 0.009996826
Convert mL to L and place under moles (mol/L)
100mL=0.1 L
0.009996826/0.1= 0.09996826 mol/L