answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
2 years ago
7

The Cassegrain design provides more compact (shorter) telescopes. Why? (Examine figures 2.4.2 and 2.4.3). The shorter design is

usually preferred in situations where the telescope is transported frequently.

Physics
1 answer:
Ipatiy [6.2K]2 years ago
5 0

Answer:

Because the light reflects multiple times until it gets to the Cassegrain focus.

Explanation:

The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)

Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.                    

You might be interested in
A ship 1200m off shore fires a gun. how long after the gun is fired will it be heard on the shore?​
ryzh [129]

Answer:

We know that the speed of sound is 343 m/s in air

we are also given the distance of the boat from the shore

From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion

s = ut + 1/2 at²

since the acceleration of sound is 0:

s = ut + 1/2 (0)t²

s = ut    <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>

Replacing the variables in the equation with the values we know

1200 = 343 * t

t = 1200 / 343

t = 3.5 seconds (approx)

Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired

6 0
2 years ago
A 1-kg mass is dropped from a third floor window. The acceleration of the mass is found to be 8 m/s2. What is the average force
Paha777 [63]
Summary:
m=1kg
a=8 m/s^2
g= 9,8 m/s^2
F(ar)=?


I hope to help you

7 0
2 years ago
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
The amount of energy necessary to remove an electron from an atom is a quantity called the ionization energy, Ei. This energy ca
larisa86 [58]

Answer:

The value is E_i  =  1.5596 *10^{-18} \  J

Explanation:

From the question we are told that

The wavelength is \lambda  =  48.2 nm  =  48.2  *10^{- 9 }\  m

The velocity is v = 2.371*10^6 \ m/s

The mass of electron is m_e  =  9.109*10^{-31} \  kg

Generally the energy of the incident light is mathematically represented as

E =  \frac{h *  c}{\lambda}

Here c is the speed of light with value c =  3.0 *10^{8} \  m/s

h is the Planck constant with value h = 6.62607015 *  10^{-34 }  J\cdot s

So

E =  \frac{6.62607015 *  10^{-34 }* 3.0 *10^{8}}{48.2  *10^{- 9 }}

=> E = 4.12 *10^{-18} \  J

Generally the kinetic energy is mathematically represented as

E_k  =  \frac{1}{2} *  m_e * v^2

=> E_k  =  \frac{1}{2} *  9.109*10^{-31} * (2.371*10^6 )^2

=> E_k  =  2.56 *0^{-18} \  J

Generally the ionization energy is mathematically represented as

E_i  =  4.12 *10^{-18} -   2.56 *0^{-18}

=>     E_i  =  1.5596 *10^{-18} \  J

8 0
2 years ago
Other questions:
  • Isabella drops a pen off her balcony by accident while celebrating the successful completion of a physics problem. assuming air
    6·1 answer
  • If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
    8·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • A violin with string length 32 cm and string density 1.5 g/cm resonates in its fundamental with the first overtone of a 2.0-m or
    10·1 answer
  • Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
    7·1 answer
  • Alicia intends to swim to a point straight across a 100 m wide river with a current that flows at 1.2 m/s. She can swim 2.5 m/s
    12·1 answer
  • City A lies directly west of city B. When there is no wind, an airliner makes the round trip flight of distance s between them i
    6·1 answer
  • A balloon and a mass are attached to a rod that is pivoted at P.
    10·1 answer
  • The maximum tension that a 0.80 m string can tolerate is 15 N. A 0.35-kg ball attached to this string is being whirled in a vert
    9·1 answer
  • A mass of 630g is hung on a spring. Using Force = mass x gravity, what is the force of the mass, acting on the spring?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!