1. Answer: C. The objects' temperatures have both changed by the same amount.
Explanation:
An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.
Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.
2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.
Explanation:
Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Answer:
Water moves into the cell
Explanation:
As shown in the question above, the cell is high in glucose and placed in a glass filled with water. This cell has a semi permeable membrane that allows only water to pass through, as the concentration of water within the cell is low, the cell will attempt to strike a balance with the medium it is inserted into. For this reason, what is likely to happen is the passage of water from the most concentrated to the least concentrated medium, that is, the water will pass from the cup to the cell.
water moves into the cell through osmosis.during osmosis water moves from a region of low concentration of solute to a region of high concentration of solute.the glucose introduced into the cell makes it more concentrated.
In this case the cell is hypertonic and water would enter into the cell through the semi permeable membrane.this membrane allows water to pass through but not glucose.this movement of water into the cell causes the cell to become turgid.
Let's assume that both He and N₂ have ideal gas behavior.<span>
Then we can use ideal gas law,
PV = nRT
Where, P is the pressure of gas, V is the volume,
n is moles of gas, R is universal gas constant and T is the temperature in
Kelvin.
<span>The </span>P <span>and </span>V <span>are </span>same<span> for the
both gases.</span>
R is a
constant.
The only variables are n and T.
<span>Let's say temperature of </span>He<span> <span>is </span></span>T</span>₁<span> <span>and temperature of </span></span>N₂<span> <span>is </span></span>T₂.<span>
n = m/M<span> where n is
moles, m is mass and M is molar mass.</span>
Molar mass of He is 4 g/mol and molar mass of N₂ is 28 g/mol</span><span>
<span>Since mass (m) of both gases are same,</span>
moles of He = m/4
moles of N₂ = m/28</span><span>
Let's apply the ideal gas equation for both gases.
For He gas,
PV = (m/4)RT₁ </span>(1)<span>
For N</span>₂ gas,<span>
PV = (m/28)RT₂<span> </span></span> (2)<span>
(1) = (2)
</span><span>(m/4)RT₁ =
(m/28)RT₂</span> <span>
T₁/4
= T₂/28</span><span>
T₁ = T₂/7</span><span>
<span> </span>7T</span>₁ = T₂<span>
Hence, the
temperature of N</span>₂<span> gas is higher by 7
times than the temperature of He gas.</span>