Concept:
<em><u>Latent Heat of Vaporization</u></em>: It is defined as the amount of heat required to change the state of mater without changing of its temperature.
From the given question, the temperature at the boiling point remained constant despite the continued addition of heat by the Bunsen burner. <em>Actually,</em> this amount of heat is used by water to break the intermolecular bonds between the water molecules in the form of latent heat that converts the liquid state of water into vapor state of water.
Hence, the correct option will be d.<u>The energy was used to break the intermolecular bonds between the water molecules. </u>
The rate of Formation of Carbocation mainly depends on two factors'
1) Stability of Carbocation: The ease of formation of Carbocation mainly depends upon the ionization of substrate. If the forming carbocation id tertiary then it is more stable and hence readily formed as compared to secondary and primary.
2) Ease of detaching of Leaving Group: The more readily and easily the leaving group leaves the more readily the carbocation is formed and vice versa. In given scenario the carbocation formed is tertiary in all three cases, the difference comes in the leaving group. So, among these three substrates the one containing Iodo group will easily dissociate to form tertiary carbocation because due to its large size Iodine easily leaves the substrate, secondly Chlorine is a good leaving group compared to Fluoride. Hence the order of rate of formation of carbocation is,
R-I > R-Cl > R-F
B > C > A
Thee question is incomplete; the complete question is;
Which elements do not strictly follow the octet rule when they appear in the Lewis structure of a molecule?
Select one or more:
A: Chlorine
B: Carbon
C: Hydrogen
D: Sulfur
E: Fluorine
F: Oxygen
Answer:
chlorine
sulphur
Explanation:
The octet rule states that, for atoms to be stable, they must have eight electrons on their outermost shells.
This rule is not strictly followed by some elements such as sulphur and chlorine. The atoms of these elements can sometimes expand their octet by utilizing the d-orbitals found in the third principal energy level and beyond.
These leads to formation of compounds in which the central atom has more than eight electrons in its outermost shell.
Answer:
Compound 1. Sulfur Dioxide
Compound 3. Dichloromethane
Compound 4. Phosphorus Trichloride
<em>(figure attached)</em>
Explanation:
Compound 1. Sulfur Dioxide
Polar compound
Through the Lewis structure it is confirmed that SO₂ is a polar compound, because it is an asymmetric compound having two regions of different polarity. The lower region having oxygen groups is more electronegative then the upper region.
Compound 2. Carbon Dioxide
Non polar Compound
Through the Lewis structure it is confirmed that CO₂ is a non polar compound, because it is a symmetric compound having two regions of same polarity. The left region and the right region both contains oxygen groups having same electronegativity.
Compound 3. Dichloromethane
Polar compound
Through the Lewis structure it is confirmed that CH₂Cl₂ is a polar compound, because it is an asymmetric compound having two regions of different polarity. Two chlorine atoms are attached to it and as we know that chlorine is a more electronegative element than hydrogen so it attracts the bonding pair of electrons towards itself which creates polarity.
Compound 4. Phosphorus Trichloride
Through the Lewis structure it is confirmed that PCl₃ is a polar compound, because three chlorine atoms attached to it and as we know that chlorine is a more electronegative element so it attracts the bonding pair of electrons towards itself which creates polarity.