answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
2 years ago
12

A 0.450 kg soccer ball has a kinetic energy of 119 J.

Physics
1 answer:
Anastaziya [24]2 years ago
8 0

Answer:

V is approximately = 23m/s

Explanation:

Kinetic energy = ½ mv²

Where m= mass = 0.450kg

V= velocity =?

K. E = 119J

Therefore

K. E = ½ mv²

Input values given

119= ½ × 0.450 × v²

Multiply both sides by 2

119 ×2  = 2 × 1/2 × 0.450 × v²

238= 0.450v²

Divide both sides by 0.450

238/0.450 = 0.450v²/0.450

v² = 528.89

Square root both sides

Sq rt v² = sq rt 528.89

V = 22.998m/s

V is approximately = 23m/s

I hope this was helpful, please rate as brainliest

You might be interested in
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
Two electric force vectors act on a particle. Their x-components are 13.5 N and −7.40 N and their y-components are −12.0 N and −
guapka [62]

Answer:

Explanation:

Given two vectors as follows

E₁ = 13.5 i -12 j

E₂ = -7.4 i - 4.7 j

Resultant E = E₁ + E₂

= 13.5 i -12 j -7.4 i - 4.7 j

E = 6.1 i - 16.7 j

a ) X component of resultant = 6.1 N

b ) y component of resultant = -16.7 N

Magnitude of resultant = √ ( 6.1² + 16.7² )

= 17.75 N

d ) If θ be the required angle

tanθ = 16.7 / 6.1 = 2.73

θ = 70° .

counterclockwise = 360 - 70 = 290°

6 0
2 years ago
The image shows a pendulum that is released from rest at point A. Shari tells her friend that no energy transformation occurs as
Masja [62]
Is  D    the  right  answer
6 0
2 years ago
Read 2 more answers
a small bar magnet is suspended horizontally by a string. When placed in a uniform horizontal magnetic field, it will
Reil [10]

Answer:

It will neither translate in the opposite direction nor .rotate so as to be at right angles, it will also neither rotate so as to be vertical direction

6 0
2 years ago
An archer tests various arrowheads by shooting arrows at a pumpkin that is suspended from a tree branch by a rope, as shown to t
erik [133]

Answer:

Bounce 1 ,  pass 3,   emb2

Explanation:

(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle.  So it is  Bounce1, pass3, emb2.  

6 0
2 years ago
Other questions:
  • Complete combustion of 1.0 metric ton of coal (assuming pure carbon) to gaseous carbon dioxide releases 3.3 x 1010 j of heat. co
    10·1 answer
  • If the humidity in a room of volume 450 m3 at 30 ∘C is 75%, what mass of water can still evaporate from an open pan?
    5·1 answer
  • Part F - Example: Finding Two Forces (Part I)
    5·1 answer
  • If an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed? (e = 1.60 × 10-19
    14·1 answer
  • A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
    10·2 answers
  • A meteoroid, heading straight for Earth, has a speed of 14.8 km/s relative to the center of Earth as it crosses our moon's orbit
    5·1 answer
  • A Honda Civic travels in a straight line along a road. The car’s distance x from a stop sign is given as a function of time t by
    7·1 answer
  • Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
    5·1 answer
  • Consider a double Atwood machine constructed as follows: A mass 4m is suspended from a string that passes over a massless pulley
    7·1 answer
  • What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!