1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.
Answer:
Fnet=7200 N
Explanation:
Fnet=mass x acceleration
mass= 1600kg acceleration=4.5m/s^2
Answer:
Explanation:
Analysis of structure gives
a=gsinθ−μkgcosθ
Notice that all the expression are right but we want to know of we can simplify the expression further.
We want to analyse if we can still further simplify the expression,
Inspecting the Right hand side of the equation, we notice that the acceleration due to gravity is common to both side, so we can bring it out i.e.
So option a is wrong because the expression can be simplified further to
a=g(sinθ−μkcosθ)
Option b is right and the best option.
Since we are given that, g=9.8m/s²
We can as well substitute that to option a
So we will have
a=9.8metre/second²(sinθ−μkcosθ)
Also option C is correct but it is not best inserting the values of g directly without simplifying the expression first
So it will have been the best option if it was written as
a=9.8metre/second²(sinθ−μkcosθ)
So the best option is B.
Answer:
30298514.82 m/s
Explanation:
M = Mass of star = 2×10³ kg
r = Radius of star = 5×10³ m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The object would be moving at a velocity of 30298514.82 m/s
Power may be defined as the rate of doing work or the rate of using energy. <span> It is the amount of energy consumed per unit time. It is calculated as follows:
P = E / t
P = 480 / 5
P = 96 W <-----OPTION 3
Hope this answers the question. Have a nice day.</span>