Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Very roughly 7,700 feet ... about 1.5 miles.
Answer:
0.4 A
Explanation:
From the question,
Electric power = Voltage×current
P = VI.......................... Equation 1
Make I the subject of the equation
I = P/V..................... Equation 2
Given: P = 96 J/s, V = 230 V.
Substitute into equation 2
I = 96/230
I = 0.4 A.
Hence the current is 0.4 A
Answer:
<h2>a)
Nathan's acceleration is 5 m/s²
</h2><h2>b)
Nathan's displacement during this time interval is 15.625 m</h2><h2>
c) Nathan's average velocity during this time interval is 6.25 m/s</h2>
Explanation:
a) We have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = 12.5 m/s
Time, t = 2.5 s
Substituting
v = u + at
1.25 = 0 + a x 2.5
a = 5 m/s²
Nathan's acceleration is 5 m/s²
b) We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 5 m/s²
Time, t = 2.5 s
Substituting
s = ut + 0.5 at²
s = 0 x 2.5 + 0.5 x 5 x 2.5²
s = 15.625 m
Nathan's displacement during this time interval is 15.625 m
c) Displacement = 15.625 m
Time = 2.5 s
We have
Displacement = Time x Average velocity
15.625 = 2.5 x Average velocity
Average velocity = 6.25 m/s
Nathan's average velocity during this time interval is 6.25 m/s
Answer:
* The value of the magnetic field changes either in time or space
* The waxed area changes, the bow is fitting in size
* The angle between the field and the area changes
Explanation:
Magnetic flux is the scalar product of the magnetic field over the area
Ф = ∫ B. dA
where B is the magnetic field and A is the area
Let's look at stationary, for which factors affect flow
* The value of the magnetic field changes either in time or space
* The waxed area changes, the bow is fitting in size
* The angle between the field and the area changes