Answer:
By decreasing pressure.
Explanation:
In order to prevent balloons from popping while making sculptures, it is suggested to decrease the pressure of air in parent balloon. Decreasing the pressure of parent balloon will allow it to twist easily and make designs.
This strategy will work according to Boyle's Law which states that, "Pressure and Volume are inversely proportional to each other at constant temperature".
Mathematically,
P ∝ 1/V
Or,
P = k/V
Or,
PV = k
Hence, as the new designs made after twisting are of less volume, therefore it is good to decrease the pressure in advance otherwise the resulting less volume will increase the pressure of daughter small balloons and will explode them.
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate the mass of the solute by first determining the number of moles needed. And by using the molar mass, we can convert it to units of mass.
Moles </span>(nh4)3po4 = 0.250 L (0.150 M) = 0.0375 moles (nh4)3po4
Mass = 0.0375 mol (nh4)3po4 (149.0867 g / mol) = 5.59 g (nh4)3po4
Answer:
The mass was there all along, it was just in the air. The weight of the oxygen from the air is not weighed in the beginning, only at the end as part of the product, making it seem like there is a total mass change.
The following compounds are soluble in water and will dissociate when dissolved in water.
A) barium hydroxide
B) ethanol
C) glucose
D) silver nitrate
E) dichloromethane
F) postassium chloride
The other compounds ethanol and glucose are also soluble in water but do not dissociate when dissolved in water.
Answer: 0.67 moles of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:


According to stoichiometry:
3 moles of
is produced by 2 moles of 
Thus 1 mole of
is produced by=
of 
Thus 0.67 moles of
are required to produce 28.3 g of