Answer:
a) 0.0625 I_1
b) 3.16 m
Explanation:
<u>Concepts and Principles </u>
The intensity at a distance r from a point source that emits waves of power P is given as:
I=P/4π*r^2 (1)
<u>Given Data</u>
f (frequency of the tuning fork) = 250 Hz
I_1 is the intensity at the source a distance r_1 = I m from the source.
<u>Required Data</u>
- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.
- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.
<u>solution:</u>
(a)
According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:
I∝1/r^2
Set the proportionality:
I_1/I_2=(r_2/r_1)^2 (2)
Solve for I_2 :
I_2=I_1(r_2/r_1)^2
I_2=0.0625 I_1
(b)
Solve Equation (2) for r_2:
r_2=(√I_1/I_2)*r_1
where I_2 = (1/10)*I_1:
r_2=(√I_1/1/10*I_1)*r_1
=3.16 m
Answer:
6.32 m/s 18.43° northeast
Explanation:
We express the velocity of hawk as:

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:
≈
And the angle with respect to the east should be with:

Either theory or evidence
<u>Answer:</u>
Velocity of the dog relative to the road = 26.04 m/s 3.15⁰ north of east.
<u>Explanation:</u>
Let the east point towards positive X-axis and north point towards positive Y-axis.
Speed of truck = 25 m/s north = 25 j m/s
Speed of dog = 1.75 m/s at an angle of 35.0° east of north = (1.75 cos 35 i + 1.75 sin 35 j)m/s
= (1.43 i + 1.00 j) m/s
Velocity of the dog relative to the road = 25 j + 1.43 i + 1.00 j = 1.43 i + 26.00 j
Magnitude of velocity = 26.04 m/s
Angle from positive horizontal axis = 86.85⁰
So Velocity of the dog relative to the road = 26.04 m/s 86.85⁰ east of north = 26.04 m/s 3.15⁰ north of east.
The labeled points which is Letter B in the given Image is the point that the axis of rotation passes through. This problem is an example of rotational dynamics, formerly an object moves in a straight line then the motion is translational but when an object at inactivity lean towards to continue at inactivity and an object in rotation be possible to continue rotating with continuous angular velocity unless bound by a net external torque to act then is rotational. In a rotational motion, the entity is not treated as a constituent part but is treated in translational motion. It points out with the study of torque that outcomes angular accelerations of the object.