Answer:
(a) 0.0178 Ω
(b) 3.4 A
(c) 6.4 x 10⁵ A/m²
(d) 9.01 x 10⁻³ V/m
Explanation:
(a)
σ = Electrical conductivity = 7.1 x 10⁷ Ω-m⁻¹
d = diameter of the wire = 2.6 mm = 2.6 x 10⁻³ m
Area of cross-section of the wire is given as
A = (0.25) π d²
A = (0.25) (3.14) (2.6 x 10⁻³)²
A = 5.3 x 10⁻⁶ m²
L = length of the wire = 6.7 m
Resistance of the wire is given as


R = 0.0178 Ω
(b)
V = potential drop across the ends of wire = 0.060 volts
i = current flowing in the wire
Using ohm's law, current flowing is given as


i = 3.4 A
(c)
Current density is given as


J = 6.4 x 10⁵ A/m²
(d)
Magnitude of electric field is given as


E = 9.01 x 10⁻³ V/m
Answer:
volcanic eruptions
Explanation:
The volcanic eruptions are the ones that manage to cause changes to the lithosphere by building up new material on the surface. Through the volcanic eruptions we have release of pyroclastic material on the surface, and more importantly and in much higher amount lava flows. The lava flows quickly cool off on the surface on the Earth, and as they do they pile up new layers of igneous rocks, thus new crust on the surface of the Earth, causing changes on the lithosphere and shaping it for the foreseeable future.
Answer:
The range is maximum when the angle of projection is 45 degree.
Explanation:
The formula for the horizontal range of the projectile is given by

The range should be maximum if the value of Sin2θ is maximum.
The maximum value of Sin2θ is 1.
It means 2θ = 90
θ = 45
Thus, the range is maximum when the angle of projection is 45 degree.
If the angle of projection is 0 degree
R = 0
It means the horizontal distance covered by the projectile is zero, it can move in vertical direction.
If the angle of projection is 30 degree.

R = 0.088u^2
If the angle of projection is 45 degree.

R = u^2 / g
Answer:
The following equation can be used.
(32°F − 32) × 5/9=C