answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
2 years ago
4

Frequently in physics, one makes simplifying approximations. A common one in electricity is the notion of infinite charged sheet

s. This approximation is useful when a problem deals with points whose distance from a finite charged sheet is small compared to the size of the sheet. In this problem, you will look at the electric field from two finite sheets and compare it to the results for infinite sheets to get a better idea of when this approximation is valid. What is the magnitude E of the electric field at the point on thex axis with x coordinate a/2?

Physics
1 answer:
Novay_Z [31]2 years ago
7 0

Answer:

Explanation:

solution found below

You might be interested in
There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
Eva8 [605]
<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>
3 0
2 years ago
Read 2 more answers
A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
Georgia [21]

Answer:

a) 2250 J

b) 0 J

c) 2250 J

Explanation:

a) Since, the process is isochoric

the change in internal energy

\Delta U = n C_v(T_f-T_i)

Here, n = 0.2 moles

Cv = 12.5 J/mole.K

We have to find T_f so we can use gas equation as

\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2    [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K

So,  \Delta U= 0.2\times12.5(1200-300)\\=2250 J

b) Since, the process is isochoric no work shall be done.

c) By first law of thermodynamics we have

\Delta U = Q-W\\Since, W = 0\\\Delta U = Q\\Therefore, Q = 2250 J

Since, Q is positive 2250 J of heat will flow into the system.

6 0
2 years ago
A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. what is the magnitude of the average force that the b
iren2701 [21]

The magnitude of the average force that the ball exerts against his glove is 600 N

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\boxed {F = ma }

F = Force ( Newton )

m = Object's Mass ( kg )

a = Acceleration ( m )

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of ball = m = 0.15 kg

initial speed of ball = u = 40 m/s

final speed of ball = v = 0 m/s

distance = d = 20 cm = 0.2 m

<u>Asked:</u>

average force = F = ?

<u>Solution:</u>

<em>We will use </em><em>Newton's Law of Motion</em><em> to solve this problem as follows:</em>

F = m a

F = m (\frac { u^2 - v^2 } { 2d } )

F = 0.15 \times \frac { 40^2 - 0^2 } { 2 \times 0.2 }

F = 0.15 \times \frac { 1600 } { 0.4 }

F = 0.15 \times 4000

\boxed {F = 600 \texttt{ N}}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

8 0
2 years ago
Read 2 more answers
A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva
AleksandrR [38]

Answer:

Explanation:

For the problem, we should have same reynolds number

ρvd/mu = constant

1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600

d = 25.66 cm

5 0
2 years ago
To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of th
Kryger [21]

Answer:

H = 10.05 m

Explanation:

If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s

so here the total time of the motion above the top point of pole is given as

\Delta t = 4.1 - 0.5 = 3.6 s

now we have

\Delta t = \frac{2v}{g}

3.6 = \frac{2v}{9.8}

v = 17.64 m/s

so this is the speed at the top of flag pole

now we have

v_f - v_i = at

17.64 - v_i = (-9.8)(0.5)

v_i = 22.5 m/s

now the height of flag pole is given as

H = \frac{v_f + v_i}{2}t

H = \frac{22.5 + 17.64}{2} (0.5)

H = 10.05 m

5 0
2 years ago
Other questions:
  • ____ 27. An amusement park ride has a frequency of 0.05 Hz. What is the ride’s period?
    15·1 answer
  • What would happen to the apparent change in mass if the direction of the current is reversed?
    12·1 answer
  • Two identical loudspeakers that are 5.00 m apart and face toward each other are driven in phase by the same oscillator at a freq
    11·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • A power plant burns 1000 kg of coal each hour and produces 500 kW of power. Calculate the overall thermal efficiency if each kg
    7·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • An insurance company hired your group to help investigate an insurance claim following a car accident. In the accident, two cars
    5·2 answers
  • A tiger leaps with an initial velocity of 35.0 km/hr at an angle of 13.0ᶿ with respect to the horizontal. What are the component
    13·1 answer
  • A student sorted mineral samples into two groups: dull and shiny. Which of the following properties did the student use to sort
    6·2 answers
  • Bill drives and sees a red light. He slows down to a stop. A graph of his velocity over time is shown below.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!