<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>
Answer:
a) 2250 J
b) 0 J
c) 2250 J
Explanation:
a) Since, the process is isochoric
the change in internal energy

Here, n = 0.2 moles
Cv = 12.5 J/mole.K
We have to find T_f so we can use gas equation as
![\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2 [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K](https://tex.z-dn.net/?f=%5Cfrac%7BP_1V_1%7D%7BP_2V_2%7D%20%3D%5Cfrac%7BT_i%7D%7BT_f%7D%5C%5CSince%2C%20V_1%3DV_2%20%20%20%20%5Bisochoric%2Fprocess%5D%5C%5C%5CRightarrow%20%5Cfrac%7BP_%7Batm%7D%7D%7B4P_%7Batm%7D%7D%20%3D%20%5Cfrac%7B300%7D%7BT_f%7D%20%5C%5C%5CRightarrow%20T_f%20%3D%201200%20K)
So, 
b) Since, the process is isochoric no work shall be done.
c) By first law of thermodynamics we have

Since, Q is positive 2250 J of heat will flow into the system.
The magnitude of the average force that the ball exerts against his glove is 600 N

<h3>Further explanation</h3>
Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

F = Force ( Newton )
m = Object's Mass ( kg )
a = Acceleration ( m )
Let us now tackle the problem !

<u>Given:</u>
mass of ball = m = 0.15 kg
initial speed of ball = u = 40 m/s
final speed of ball = v = 0 m/s
distance = d = 20 cm = 0.2 m
<u>Asked:</u>
average force = F = ?
<u>Solution:</u>
<em>We will use </em><em>Newton's Law of Motion</em><em> to solve this problem as follows:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
Answer:
Explanation:
For the problem, we should have same reynolds number
ρvd/mu = constant
1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600
d = 25.66 cm
Answer:

Explanation:
If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s
so here the total time of the motion above the top point of pole is given as

now we have



so this is the speed at the top of flag pole
now we have



now the height of flag pole is given as


