Answer:
See explanation and image attached
Explanation:
This reaction is known as mercuric ion catalyzed hydration of alkynes.
The first step in the reaction is attack of the mercuric ion on the carbon-carbon triple bond, a bridged intermediate is formed. This bridged intermediate is attacked by water molecule to give an organomercury enol. This undergoes keto-enol tautomerism, proton transfer to the keto group yields an oxonium ion, loss of the mercuric ion now gives equilibrium keto and enol forms of the compound. The keto form is favoured over the enol form.
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
Answer:
Explanation:
q= mc theta
where,
Q = heat gained
m = mass of the substance = 670g
c = heat capacity of water= 4.1 J/g°C
theta =Change in temperature=(
66-25.7)
Now put all the given values in the above formula, we get the amount of heat needed.
q= mctheta
q=670*4.1*(66-25.7)
=670*4.1*40.3
=110704.1
Answer : The enthalpy change for the reaction is, 201.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The balanced reaction of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

(4)

Now we will multiply the reaction 1 by 2, revere the reaction 2, reverse and half the reaction 3 and 4 then adding all the equations, we get :
(1)

(2)

(3)

(4)

The expression for enthalpy of the reaction will be,



Therefore, the enthalpy change for the reaction is, 201.9 kJ
<u>Answer:</u>
<u>For a:</u> The equilibrium mixture contains primarily reactants.
<u>For b:</u> The equilibrium mixture contains primarily products.
<u>Explanation:</u>
There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given chemical reactions:
The chemical equation follows:

The expression of
for above reaction follows:
![K_{eq}=\frac{[CN^-][H_3O^+]}{[HCN][H_2O]}=6.2\times 10^{-10}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BCN%5E-%5D%5BH_3O%5E%2B%5D%7D%7B%5BHCN%5D%5BH_2O%5D%7D%3D6.2%5Ctimes%2010%5E%7B-10%7D)
As,
, the reaction will be favored on the reactant side.
Hence, the equilibrium mixture contains primarily reactants.
The chemical equation follows:

The expression of
for above reaction follows:
![K_{eq}=\frac{[HCl]^2}{[H_2][Cl_2]}=2.51\times 10^{4}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHCl%5D%5E2%7D%7B%5BH_2%5D%5BCl_2%5D%7D%3D2.51%5Ctimes%2010%5E%7B4%7D)
As,
, the reaction will be favored on the product side.
Hence, the equilibrium mixture contains primarily products.