Answer:
(A) 374.4 J
(B) -332.8 J
(C) 0 J
(D) 41.6 J
(E) 351.8 J
Explanation:
weight of carton (w) = 128 N
angle of inclination (θ) = 30 degrees
force (f) = 72 N
distance (s) = 5.2 m
(A) calculate the work done by the rope
- work done = force x distance x cos θ
- since the rope is parallel to the ramp the angle between the rope and
the ramp θ will be 0
work done = 72 x 5.2 x cos 0
work done by the rope = 374.4 J
(B) calculate the work done by gravity
- the work done by gravity = weight of carton x distance x cos θ
- The weight of the carton = force exerted by the mass of the carton = m x g
- the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.
work done by gravity = 128 x 5.2 x cos 120
work done by gravity = -332.8 J
(C) find the work done by the normal force acting on the ramp
- work done by the normal force = force x distance x cos θ
- the angle between the normal force and the ramp is 90 degrees
work done by the normal force = Fn x distance x cos θ
work done by the normal force = Fn x 5.2 x cos 90
work done by the normal force = Fn x 5.2 x 0
work done by the normal force = 0 J
(D) what is the net work done ?
- The net work done is the addition of the work done by the rope, gravitational force and the normal force
net work done = 374.4 - 332.8 + 0 = 41.6 J
(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal
- work done by the rope= force x distance x cos θ
- the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp
work done = 72 x 5.2 x cos 20
work done = 351.8 J
Answer: C. The case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
First and foremost, it should be noted that the mechanical energy is the addition of the potential and the kinetic energy.
From the information given, it should be known that when the block is projected with the same speed v up an incline where is slides to a stop due to friction, the box will lose its kinetic energy but there'll be na increase in the potential energy as a result of the veritcal height. This then brings about an increase in the mechanical energy.
Therefore, the total mechanical energy of the block will decrease the least when the case on the inclined surface had the least decrease intotal mechanical energy.
Newton's first law says that an object at rest tends to stay at rest while an object in motion stays in motion at a constant velocity unless acted upon by an outside force so the amount of force behind the defensive football player (N) was greater than the quarterback's so he was able to over power him which is also called unbalanced forces
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
x = v₀ cos θ t
, y = y₀ + v₀ sin θ t - ½ g t2
Explanation:
This is a projectile launch exercise, in this case we will write the equations for the x and y axes
Let's use trigonometry to find the components of the initial velocity
sin θ =
/ v₀
cos θ = v₀ₓ / v₀
v_{y} = v_{oy} sin θ
v₀ₓ = vo cos θ
now let's write the equations of motion
X axis
x = v₀ₓ t
x = v₀ cos θ t
vₓ = v₀ cos θ
Y axis
y = y₀ +
t - ½ g t2
y = y₀ + v₀ sin θ t - ½ g t2
v_{y} = v₀ - g t
v_{y} = v₀ sin θ - gt
= v_{oy}^2 sin² θ - 2 g y
As we can see the fundamental change is that between the horizontal launch and the inclined launch, the velocity has components