Answer:
A) 
B) 
Explanation:
Given:
- temperature of air,

- temperature of lungs,

- specific Heat exchanged from the lungs ,

- specific heat of air,

- mass of 1 L air,

- breath rate,

A)
Now,
amount of heat needed to warm the air of lungs to the body temperature:



B)
Amount of heat lost per hour:
<u>No. of breaths per hour:</u>



<u>Now the total loss of energy in 1 hr.:</u>



Answer:

Explanation:
we know angular velocity in terms of moment of inertia and angular speed
ω .... (1)
moment of inertia of rod rotating about its center of length b
........ .(2)
using v = ωr
where w is angular velocity
and r is radius of rod which is equal to b
so we get 2v = ωb
ω = 2v/b ................. (3)
here velocity is two time because two opposite ends are moving opposite with a velocity v so net velocity will be 2v
put second and third equation in ist equation
×
so final answer will be 
Answer:
t is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
Explanation:
In many exercises the units used are transformed by equations into other units called derivatives, in general the transformation of derived units is the product of the transformation of the constituent units.
In the example of velocity, the derivative unit is m / s, which is why it works in the same way that you transform length and time if in the equation it is multiplying it is multiplied and if it is dividing it is divided.
It is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
1000 m = 1 km
Answer:
The magnitude of the rate of change of the child's momentum is 794.11 N.
Explanation:
Given that,
Mass of child = 27 kg
Speed of child in horizontal = 10 m/s
Length = 3.40 m
There is a rate of change of the perpendicular component of momentum.
Centripetal force acts always towards the center.
We need to calculate the magnitude of the rate of change of the child's momentum
Using formula of momentum


Put the value into the formula


Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The temperature change is 
Explanation:
From the question we are told that
The velocity field with which the bird is flying is 
The temperature of the room is 
The time considered is t = 10 \ seconds
The distance that the bird flew is x = 1 m
Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird
Generally the change in the bird temperature with time is mathematically represented as
![\frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 * (5-x)] [-\frac{dx}{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4%20%5Cfrac%7Bdy%7D%7Bdt%7D%20-0.6%5Cfrac%7Bdz%7D%7Bdt%7D%20-0.2%5B2%20%2A%20%20%285-x%29%5D%20%5B-%5Cfrac%7Bdx%7D%7Bdt%7D%20%5D)
Here the negative sign in
is because of the negative sign that is attached to x in the equation
So
![\frac{dT}{dt} = -0.4v_y -0.6v_z -0.2[2 * (5-x)][ -v_x]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4v_y%20%20-0.6v_z%20-0.2%5B2%20%2A%20%20%285-x%29%5D%5B%20-v_x%5D)
From the given equation of velocity field



So
substituting the given values of x and t