Answer:
8 Silicon atom are present in unit cell.
16 oxygen atoms are present unit cell.
Explanation:
Number of atoms in unit cell = Z =?
Density of silica = tex]2.32 g/cm^3[/tex]
Edge length of cubic unit cell = a = 0.700 nm = 

Molar mass of Silica = 
Formula used :
where,
= density
Z = number of atom in unit cell
M = atomic mass
= Avogadro's number
a = edge length of unit cell
On substituting all the given values , we will get the value of 'a'.
1 silicon is 2 oxygen atoms. then 8 silicon atoms will be 16 oxygen atoms.
Explanation:
When diluting a fruit juice, it is important to know the final volume so as not to over dilute the solution.
- The fruit juice can become too diluted if we don't know the final volume .
- Concentration refers to the amount of solute dissolved in a solvent.
- To achieve a desired amount of concentration during dilution, the volume of the target must be known.
- This will serve as a guide of the amount of solvent to add in order to take the solution to the desired volume.
Learn more:
Dilution brainly.com/question/11493179
#learnwithBrainly
Answer:
For a substance to classify as a mineral, it must lie within certain parameters. It should be an inorganic solid, that is naturally occurring in nature (not synthesized), with an ordered internal structure and a definite chemical composition.
By definite chemical composition, geologists mean that the mineral must be have chemical constituents that have an unvarying chemical composition, or a chemical composition that oscillates withing a very limited and specific range.
An example is the mineral, halite. It has a chemical composition of one sodium atom and one chloride atom, represented as NaCl and is unchanging in this composition throughout nature.
<h3>Hope this helps</h3>
Answer:
Mg would blow off. AI would be affective to copper but not to MG
Explanation:
Answer: The oxidation state of selenium in SeO3 is +6
Explanation:
SeO3 is the chemical formula for selenium trioxide.
- The oxidation state of SeO3 = 0 (since it is stable and with no charge)
- the oxidation number of oxygen (O) IN SeO3 is -2
- the oxidation state of selenium in SeO3 = Z (let unknown value be Z)
Hence, SeO3 = 0
Z + (-2 x 3) = 0
Z + (-6) = 0
Z - 6 = 0
Z = 0 + 6
Z = +6
Thus, the oxidation state of selenium in SeO3 is +6