answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
2 years ago
5

A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a

hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad>s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle.
a. Is angular momentum conserved?
b. Find the change in kinetic energy of the block, in J.
c. How much work was done in pulling the cord? in J.
Physics
1 answer:
sweet [91]2 years ago
8 0

Answer:

W= K_2-K_1==9.12\times10^{-3} J

Explanation:

a) Yes, In the absence of external torques acting on the system, the angular momentum is conserved.

b) By the law of conservation of energy angular momentum

L_1=L_2

I_1\omega_1=I_2\omega_2

mr_1^2\omega_1=mr_2^2\omega_2\\\omega_2=(\frac{r_1}{r_2} )^2\omega_1

\omega_2=(\frac{0.3}{0.15})^2\times2.85

\omega_2=5.7\text{ rad/sec}

c) work done in pulling the chord W= Final kinetic energy(K_2)-Initial Kinetic energy(K_1)

K_1=\frac{1}{2} mr_1^2\omega_1^2

K_1=\frac{1}{2} \times0.025\times0.3^2\times2.85^2

=9.12\times10^{-3} J

Now,

K_2=\frac{1}{2} mr_2^2\omega_2^2

K_2=\frac{1}{2} \times0.025\times0.15^2\times5.7^2

K_2=18.24\times10^{-3} J

Therefore, Work done W= K_2-K_1==9.12\times10^{-3} J

You might be interested in
On a warm summer day (31 ∘c), it takes 4.60 s for an echo to return from a cliff across a lake. on a winter day, it takes 5.00 s
xenn [34]
The question is missing, but I guess the problem is asking for the distance between the cliff and the source of the sound.

First of all, we need to calculate the speed of sound at temperature of T=31^{\circ}C:
v=(331+0.60 T) m/s = (331+0.6 \cdot 31) m/s = 349.6 m/s

The sound wave travels from the original point to the cliff and then back again to the original point in a total time of t=4.60 s. If we call L the distance between the source of the sound wave and the cliff, we can write (since the wave moves by uniform motion):
v= \frac{2L}{t}
where v is the speed of the wave, 2L is the total distance covered by the wave and t is the time. Re-arranging the formula, we can calculate L, the distance between the source of the sound and the cliff:
L= \frac{vt}{2}= \frac{(349.6 m/s)/4.60 s)}{2}=  804.1 m
6 0
2 years ago
a steel block has a mass of 40g.it is in the form of a cube. each edge is 1.74cm long. calculate the density
Vinil7 [7]

Answer:

d ≈ 7,6 g/cm³  

Explanation:

d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³

V = l³ = (1.74cm)³ ≈ 5,27 cm³

3 0
2 years ago
You drop a 6.0x10^-2 kg ball from height of 1.0m above hard flat surface. Ball strikes surface and energy decreases by 0.14J, th
harina [27]
If you drop a <span>6.0x10^-2 kg ball from height of 1.0m above hard flat surface, and a</span>fter the ball had bounce off the flat surface, the kinetic energy of the ball would be mgh - 0.14 = 0.45. 
3 0
2 years ago
Read 2 more answers
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to t
yarga [219]

Answer

The rate at which the magnetic field is changing is  [\frac{dB}{dt} ] =  0.000467 T/s

Explanation

From the question we are told that

   The electric field strength is E =  3.5mV/m =  3.5 *10^{-3} \ V/m

    The radius is  r =  1.5 \ m

The rate of change of the  magnetic  field  is mathematically represented as

        \frac{d \phi }{dt}  =  \int\limits^{} {E \cdot dl}

Where dl is change of a unit length

     \frac{d \phi}{dt}  =  A *  \frac{dB}{dt}

Where A is the area which is mathematically represented as

     A = \pi r^2

    So

    E \int\limits^{} {  dl} =  ( \pi r^2) (\frac{dB}{dt} )  

  E L  =  ( \pi r^2) (\frac{dB}{dt} )  

where L is the circumference of the circle which is mathematically represented as

     L = 2 \pi r

So

     E (2 \pi r ) =  (\pi r^2 ) [\frac{dB}{dt} ]

      E  =   \frac{r}{2}  [\frac{dB}{dt} ]

       [\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }

substituting values

      [\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }

      [\frac{dB}{dt} ] =  0.000467 T/s    

8 0
2 years ago
Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m l ,
Vitek1552 [10]

Answer:

The correct option that represents an acceptable set of quantum numbers for an electron in an atom is;

(b) 4, 3, -3, 1/2.

Explanation:

To solve the question, we note that the available options where the set of quantum numbers for an electron in an atom are arranged as n, l, m l , and ms are;

4, 4, 4, 1/2

4, 3, -3, 1/2

4, 3, 0, 0

4, 5, 7, -1/2

4, 4, -5, 1/2

Let us label them as a to as follows

(a) 4, 4, 4, 1/2

(b) 4, 3, -3, 1/2

(c) 4, 3, 0, 0

(d) 4, 5, 7, -1/2

(e) 4, 4, -5, 1/2

Next we note the rules for the assignment and arrangement of quantum numbers are as follows

Number                                   Symbol                Possible values

Principal Quantum Number  .......n........................1, 2, 3, ......n

Angular momentum quantum

number...............................................l.........................0, 1, 2, .......(n - 1)

Magnetic Quantum Number........m₁......................-l, ..., -1, 0, 1,.....,l  

Spin Quantum Number.................m_s.....................+1/2, -1/2

We are meant to analyze each of the arrangement for acceptability.

Therefore for (a),

we note that the angular momentum quantum number, l =4 , is equal to the principal quantum number n =4 which violates the rule as the maximum value of the angular momentum quantum number is (n-1) where the maximum value of the principal quantum number is n.

Therefore (a) is not acceptable.

(b) Here we note that

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = -3 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (b) 4, 3, -3, 1/2 represents an acceptable set of quantum numbers for an electron in an atom.

(c) Here we have

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = 0 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 0 ∉ (+1/2, -1/2) → not acceptable

Therefore (c) 4, 3, 0, 0 does not represents an acceptable set of quantum numbers for an electron in an atom.

(d) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 5 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = 7 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = -1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (d) 4, 5, 7, -1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

(e) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 4 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = -5 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (e) 4, 4, -5, 1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

3 0
2 years ago
Other questions:
  • To avoid an accident, a driver steps on the brakes to stop a 1000-kg car traveling at 65km/h. if the braking distance is 35 m, h
    7·1 answer
  • Siska hit a golf ball into the air with an initial velocity of 56 feet per second. The height h in feet of the ball above the gr
    12·2 answers
  • Jack (mass 52.0 kg ) is sliding due east with speed 8.00 m/s on the surface of a frozen pond. he collides with jill (mass 49.0 k
    9·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu
    9·1 answer
  • The furnace keeps houseAat 25◦C, while thefurnace in houseBkeeps it at 20◦C. Which house requires heat to be supplied by its fur
    7·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • an ideal gas is confined to a container with adjustable volume. the number of moles, n, and temperature, t, are constant. by wha
    10·1 answer
  • POINTS + BRAINLIEST TO CORRECT ANSWER
    5·1 answer
  • 3. The expression 0.62 x10^3 is equivalent to...
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!