Two equations will not have solution if they are parallel and have different y-intercepts. Parallel lines have the same slope. In a slope-intercept form, the equation of the line can be expressed as,
y = mx + b
where m is slope and b is the y-intercept.
Given: 3x - 4y = 2
Slope-intercept: y = 3x/4 - 1/2
A. 2y = 1.5x - 2
Slope-intercept: y = 3x/4 - 1
B. 2y = 1.5x - 1
Slope-intercept: y = 3x/4 - 1/2
C. 3x + 4y = 2
Slope-intercept: y = -3x/4 + 1/2
D. -4y + 3x = -2
Slope-intercept: y = 3x/4 + 1/2
Hence, the answers to this item are A and D.
Solve for r.
You want to get r by itself on one side on the equal sign.
bh + hr = 25
Subtract bh from both sides.
hr = 25 - bh
Divide h on both sides.
r = 25 - bh / h
The two h's cancel each other out.
r = 25 - b
Hope this helps!
Answer:15
Step-by-step explanation:
Given
Craftsman sell 10 Jewelry set for $500 each
For each additional set he will decrease the price by $ 25
Suppose he sells n set over 10 set
Earning
Earning 

differentiate to get the maximum value

Equate
to get maximum value



Thus must sell 5 extra set to maximize its earnings.
Answer: The volume of container that holds 460 grams of oil is 500 cm³.
Step-by-step explanation:
Density of olive oil is 
An olive farmer wants to sell bottles that contain 460 grams of oil.
Therefore
Mass of oil = 460 grams
As we know

Hence, the volume of container that holds 460 grams of oil is 500 cm³.
Answer: In the beginning he was given 27 sweets.
Step-by-step explanation: The most logical thing to do is to solve it backwards, that is, from what he had at the end of the third day up till the beginning of the first day.
On the third day he ate one-third and had 8 sweets left over. To determine how many he started with on the third day, let the total on day three be called a. If one-third of a is eaten, then the left over which is two-thirds is 8. That is;
8/a = 2/3
By cross multiplication we now have
8 x 3 = 2a
24/2 = a
a = 12
Let the number of sweets he had on day two be called b. If he ate one-third of b and he had 12 left over, then the two-thirds left over is 12 and we now have;
12/b = 2/3
By cross multiplication we now have
12 x 3 = 2b
36 = 2b
36/2 = b
b = 18
Let the number of sweets he had on day one be called x. If he ate one-third of x and he had 18 left over, then the two-thirds left over is 18, and we now have;
18/x = 2/3
By cross multiplication we now have
18 x 3 = 2x
54 = 2x
x = 27
Therefore Tim was given 27 sweets at the beginning.