Atomic weight of the element = atomic weight of isotope 1 * abundance of isotope 1 + atomic weight of isotope 2 * abundance of isotope 2
Atomic weight of the element = 120.9038 amu * 57.25% + 122.8831 amu * (1 - 57.25%)
Atomic weight of the element = 69.2174255 + 52.53252525 = 121.74995075
=> ~ 121.7500 <--------- answer
We will assume that the only reactants are x and y and that the only product is xy.
Based on the law of mass conservation, mass is an isolated system that can neither be created nor destroyed.
Applying this concept to the chemical reaction, we will find that the total mass of the reactants must be equal to the total mass of the products,
therefore:
mass of x + mass of y = mass of xy
12.2 + mass of y = 78.9
mass of y = 78.9 - 12.2 = 66.7 grams
Answer:
The pressures will remain at the same value.
Explanation:
A catalyst is a substance that alter the rate of a chemical reaction. It either speeds up the or slows down the rate of a chemical reaction.
While a catalyst affects the rate, it is noteworthy that it has no effect on the equilibrium position of the chemical reaction. A catalyst works by creating an alternative pathway for the reaction to proceed. Most times, it decreases the activation energy needed to kickstart the chemical reaction.
Hence, we know that it has no effect on the equilibrium position. Factors affecting equilibrium position includes, temperature and concentration of reactants and products( pressure in terms of gases).
The reactants and the products here are gaseous, and as such pressure affects the equilibrium position. Now, we have established that the equilibrium position is unaffected. And as such the pressure affecting it does not change.
Thus, we have established that the pressure of the products and reactants are unaffected and as such they remain at their value unaffected.
Answer:
−2399.33 kJ
Explanation:
If NH₄NO₃ reacts with fuel oil to give a ΔH of -7198 for every 3 moles of NH₄NO₃
What is the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction
∴ For every 1 mole, we will have
of the total enthaply of the 3 moles
so, to determine the 1 mole; we have:

= −2399.33 kJ
∴ the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction = −2399.33 kJ