Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.
Answer:
Therefore the required solution is

Explanation:
Given vibrating system is

Consider U(t) = A cosωt + B sinωt
Differentiating with respect to t
U'(t)= - A ω sinωt +B ω cos ωt
Again differentiating with respect to t
U''(t) = - A ω² cosωt -B ω² sin ωt
Putting this in given equation


Equating the coefficient of sinωt and cos ωt
.........(1)
and

........(2)
Solving equation (1) and (2) by cross multiplication method


and 
Therefore the required solution is

when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
If speed = distance/time , then time = speed/distance.
So...
Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)
Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))
I hope this was a helpful explanation, please reply if you have further questions about the problem.
Good luck!
Answer:
Diameter of the cylinder will be 
Explanation:
We have given young's modulus of steel
Change in length 
Length of rod 
Load F = 11100 KN
Strain is given by 
We know that young's modulus 
So 

We know that stress 
So 

So 