Answer: 2.72 metres
Explanation:
Given that:
frequency of sound F = 123 Hz. wavelength of sound in the air = ?
speed of sound in air V = 334 m/s
Recall that wavelength is the distance covered by the wave after one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
λ = V /F
λ = 334m/s / 123Hz
λ = 2.72m
Thus, the wavelength of this sound in the air is 2.72 metres
The widely accepted hypothesis before that turned out wrong was the Earth-Centered theory or the Geocentric Theory. This was proposed by the philosopher Ptolemy. He came about to this hypothesis from hi observation that from the Earth's perspective, the celestial bodies like the Sun, stars and the moon, look like they rotate around the Earth each day and night. However, this was disproved by Galileo Galelei by his Heliocentric Theory. He observed through the telescope that the Venus also changes phases like the moon. However, he deduced that this is not possible from the positions of the Venus, Earth, Moon and Sun.
Answer:
<h2>
The magnitude of force F is 18N</h2>
Explanation:
The magnitude of the force in the set up can be solved for using the principle of moment. According to the principle, the sum of clockwise moment is equal to the sum of anticlockwise moments.
Moment = Force * perpendicular distance
Clockwise moments;
The force that acts clockwise is the unknown Force F and 4N force. If the beam rests on a pivot 60 cm from end X and a Force F acts on the beam 80 cm from end X, the perpendicular distance of the force F from the pivot is 80-60 = 20cm and the perpendicular distance of the 4N force from the pivot is 60-50 = 10cm
Moment of force F about the pivot = F * 20
Moment of 4N force about the pivot = 4*10 = 40Nm
Sum of clockwise moment = 40+20F...(1)
Anticlockwise moment;
The 8N will act anticlockwisely about the pivot.
The distance between the 8N force and the pivot is 60-10 = 50cm
Moment of the 8N force = 8*50
=400Nm...(1)
Equating 1 and 2 we have;
40+20F = 400
20F = 400-40
20F = 360
F = 18N
The magnitude of force F is 18N
The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.
Answer:
m = 1.82E+23 kg
Explanation:
G = universal gravitational constant = 6.67E-11 N·m²/kg²
r = radius of orbit = 72,600 km = 7.26E+07 m
C = circumference of orbit = 2πr = 4.56E+08 m
P = period of orbit = 12.9 d = 1,114,560 s
v = orbital velocity of satellite Jim = C/P = 409 m/s
m = mass of Xandar = to be determined
v = √(Gm/r)
v² = [√(Gm/r)]²
v² = Gm/r
rv² = Gm
rv²/G = m
m = rv²/G
mG = universal gravitational constant = 6.67E-11 N·m²/kg²
r = radius of orbit = 72,600 km = 7.26E+07 m
C = circumference of orbit = 2πr = 4.56E+08 m
P = period of orbit = 12.9 d = 1,114,560 s
v = orbital velocity of satellite Jim = C/P = 409 m/s
m = mass of Xandar = to be determined
v = √(Gm/r)
v² = [√(Gm/r)]²
v² = Gm/r
rv² = Gm
rv²/G = m
m = rv²/G
m = 1.82E+23 kg