answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
1 year ago
6

You then measure Polly's internal temperature to be 13oC, which is quite a drop from the normal human body temperature of 37oC.

And weighing Polly, you find her mass to be 60 kg. Now, subtracting the heat warming the water from the surrounding environment, we assume Polly gave up only 5000 kJ of thermal energy to warm the bath. With these numbers, determine Polly's specific heat in units J/(kgoC).
Physics
1 answer:
ankoles [38]1 year ago
5 0

Answer:

The specific heat is 3.47222 J/kg°C.

Explanation:

Given that,

Temperature = 13°C

Temperature = 37°C

Mass = 60 Kg

Energy = 5000 J

We need to calculate the specific heat

Using formula of energy

Q= mc\Delta T

c =\dfrac{Q}{m\Delta T}

Put the value into the formula

c=\dfrac{5000}{60\times(37-13)}

c=3.47222\ J/kg^{\circ}C

Hence, The specific heat is 3.47222 J/kg°C.

You might be interested in
Most of the nutrients in the rainforest ecosystem are in the _____.
joja [24]
<span>The answer should be the vegitation. </span>
4 0
1 year ago
Read 2 more answers
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
1 year ago
Which statements identify what astronomers currently know and think will happen with our universe? Check all that apply. The big
Olegator [25]

The big bang produced dark energy, which accounts for some of the energy needed to expand the universe.

The vastness of space may contain a type of matter known as “dark matter.”

The universe is currently expanding at an accelerating rate.

Hope this helps !

7 0
2 years ago
Read 2 more answers
A uniform 1.0-N meter stick is suspended horizontally by vertical strings attached at each end. A 2.0-N weight is suspended from
fgiga [73]

Answer:

3.5 N

Explanation:

Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm

- Tension of the string attached at the 0cm end is 0 as moment arm is 0

- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise

- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise

- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise

- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise

- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.

Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm

Total counter-clockwise moment = 100T

For this to balance, 100 T = 350

so T = 350 / 100 = 3.5 N

4 0
1 year ago
A tin can whirled on the end of a string moves in a circle because
Ilya [14]

Answer:

There is an inward force acting on the can

Explanation:

This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.

8 0
2 years ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • Sam's bike tire contains 15 units of air particles and has a volume of 160mL. Under these conditions the pressure reads 13 psi.
    13·1 answer
  • In the circuit shown in the figure, four identical resistors labeled a to d are connected to a battery as shown. s1 and s2 are s
    14·1 answer
  • What is the wavelength of a 100-mhz ("fm 100") radio signal?
    14·2 answers
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • Please Help!!!
    8·2 answers
  • A student has derived the following nondimensionally homogeneous equation:a=xt2−vt+Fmwhere v is a velocity's magnitude, a is an
    9·1 answer
  • The seismic activity density of a region is the ratio of the number of earthquakes during a given time span to the land area aff
    11·2 answers
  • To understand how the two standard ways to write the general solution to a harmonic oscillator are related.
    5·1 answer
  • A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!