Answer:
This question is incomplete and unclear; the complete question including the missing part is:
Emelie is working on a science project. Her task is to answer the question:
"Does Rogooti (a hair cream sold on TV) affect the speed of hair growth
(in length)". Her family is willing to volunteer for the experiment. Identify the control group (CG) and the independent and dependent variables.
ANSWER:
Independent variable: Rogooti hair cream
Dependent variable: Speed of hair growth/length
Control group: Family members that do not use the Rogooti hair cream
Explanation:
In an experiment, the independent variable is the variable that the experimenter changes or manipulates in order to bring about a measurable response. In this case, the ROGOOTI HAIR CREAM is the independent variable.
Dependent variable refers to the variable that is measured or the variable that responds to the change made to the independent variable. In this case, the dependent variable is SPEED AT WHICH HAIR GROWS (IN LENGTH).
Control group in an experiment is the group that does not receive the experimental treatment. In this case, the experimental treatment is the Rogooti hair cream, hence, the control group will be the VOLUNTEER FAMILY MEMBERS THAT DOES NOT RECEIVE THE ROGOOTI HAIR CREAM ON THEIR HAIR.
When preparing diluted solutions from concentrated solutions , we can use the following equation;
c1v1 =c2v2
Where c1 and v1 are the concentration and volume of the concentrated solution
c2 is the concentration of the diluted solution to be prepared
v2 is the volume of the diluted solution
Substituting the values;
12.0 M x v1 = 0.339 M x 100 mL
v1 = 2.825 mL needs to be taken from the stock solution
Explanation:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
The atomic mass of isotope (II) of vanadium is 49.944 amu.
Answer:
9.1
Explanation:
Step 1: Calculate the basic dissociation constant of propionate ion (Kb)
Sodium propionate is a strong electrolyte that dissociates according to the following equation.
NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻
Propionate is the conjugate base of propionic acid according to the following equation.
C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻
We can calculate Kb for propionate using the following expression.
Ka × Kb = Kw
Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰
Step 2: Calculate the concentration of OH⁻
The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.
[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M
Step 3: Calculate the concentration of H⁺
We will use the following expression.
Kw = [H⁺] × [OH⁻]
[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M
Step 4: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1
What you need to do is find 1/8 of 50
you can just divide 50 by 8 to get 6.25
so now you have to find how many days it will take till there are 6.25 grams of iodine left
every 8.1 days its mass is split in half
so start splitting it in half and every time you do, you add 8.1 days
50/2 =25 8.1
25/2 =12.5 + 8.1
12.5/2= 6.25 +8.1
now you have reached 1/8 of the original amount of Iodine-131
so to find how long it took just add 8.1+8.1+8.1
(this is the same as 8.1x3)
which equals 24.3
it will take 24.3 days for Iodine 131 to decay to 1/8 of its original mass.
(good luck on the regent if thats what your studying for :)