During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
Answer:
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Explanation:
The electric field is given by
dE = k dq / r²
In this case as we have a continuous load distribution we can use the concept of linear density
λ= Q / x = dq / dx
dq = λ dx
We substitute in the equation
∫ dE = k ∫ λ dx / x²
We integrate
E = k λ (-1 / x)
We evaluate between the lower limits x = x₀- x₂ and higher x = x₀-x₁
E = k λ (-1 / x₀-x₁ + 1 / x₀-x₂)
E = k λ (x₂ -x₁) / (x₀-x₂) (x₀-x₁)
We replace the density
E = k (Q / (x₂-x₁)) [(x₂-x₁) / (x₀-x₂) (x₀-x₁)]
E = k Q 1 / (x₀-x₂) (x₀-x₁)
We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>
Answer:
1.75 m/s
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(50 g) (15 m/s) + (600 g) (0 m/s) = (50 g) (-6 m/s) + (600 g) v
v = 1.75 m/s