1. Answer: C. The objects' temperatures have both changed by the same amount.
Explanation:
An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.
Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.
2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.
Explanation:
Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.
The oxidation number of iodine is 5 in Mg(IO3)2 which can be calculated as
Mg(IO3)2
MgI2O6
As we know that
Mg has +2
O has -2
So,
(+2) + 2I + 6 (-2)=0
2 + 2I - 12 =0
10+ 2I =0
10 = 2I
I =5
Answer: The temperature rise is 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed by ice = 5280 J
m = mass of ice = 2.40 kg = 2400 g (1kg=1000g)
c = heat capacity of water = 
Initial temperature =
Final temperature =
Change in temperature ,
Putting in the values, we get:


Thus the temperature rise is 
Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen.
From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.
*The case is impossible because the actual yield is greater than the theoretical yield.
If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E.