I’ll try and help u in 6 years
Answer:
Side of 22 and height of 11
Step-by-step explanation:
Let s be the side of the square base and h be the height of the tank. Since the tank volume is restricted to 5324 ft cubed we have the following equation:


As the thickness is already defined, we can minimize the weight by minimizing the surface area of the tank
Base area with open top 
Side area 4sh
Total surface area 
We can substitute 


To find the minimum of this function, we can take the first derivative, and set it to 0



![s = \sqrt[3]{10648} = 22](https://tex.z-dn.net/?f=s%20%3D%20%5Csqrt%5B3%5D%7B10648%7D%20%3D%2022)

ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work
EXPLANATION
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same
For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y
For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4
Therefore, for the two expressions to be conjugates, we must satisfy the two conditions.
Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the
x²y = -4 ... (I)
Condition 2: Real parts are the same
x² + y = -3 ... (II)
We have a system of equations since both conditions must be satisfied
x²y = -4 ... (I)
x² + y = -3 ... (II)
We can rearrange equation (II) so that we have
y = -3 - x² ... (II)
Substituting into equation (I)
x²y = -4 ... (I)
x²(-3 - x²) = -4
-3x² - x⁴ = -4
x⁴ + 3x² - 4 = 0
(x² + 4)(x² - 1) = 0
(x² + 4)(x-1)(x+1) = 0
Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.
Solve for y:
y = -3 - x² ... (II)
y = -3 - (±1)²
y = -3 - 1
y = -4
So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:
-3 + ix²y
= -3 + i(±1)²(-4)
= -3 - 4i
x² + y + 4i
= (±1)² - 4 + 4i
= 1 - 4 + 4i
= -3 + 4i
They result in conjugates
Answer:
Option D
Step-by-step explanation:
correct answer on edge :)
Answer:
You have worked cut out for you but have a good day :)!!!!!!!!
Step-by-step explanation: