The given thermochemical reaction is between hydrogen gas and chlorine gas to form hydrogen chloride.
This can be represented as:
Δ
=-184.6 kJ/mol
So when two moles of HCl is formed, 184.6 kJ of energy is released.
Calculating the heat released when 3.18 mol HCl (g) is formed in the reaction:

Therefore, 293.5 kJ of heat is released when 3.18 mol HCl is formed in the reaction between hydrogen and chlorine.
Answer:

Explanation:
Mol of NaI = 0.405 mol
Molarity of solution = 0.724 M
Molarity is given by

The required volume is
.
After some thinking I have come to the conclusion that the answer is C.
Answer:
The tissue cells
Explanation:
I think you mean this

It all starts from Carbondioxide. This Carbondioxide is dissolved in the blood and taken by red blood cell and converted into carbonic acid. It then dissociates to form a bicarbonate ion
and a hydrogen ion 
This <--> means that the whole process is reversible. It is a buffer system to maintain the pH in the blood and duodenum. And also to support proper metabolic function.
Answer:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base
Explanation:
Arrhenius theory states that a compound is considered a base, if the compound can generate OH⁻ ions in aqueous solution.
Our compound is the RbOH.
When it is put in water, i can dissociate like this:
RbOH → Rb⁺ + OH⁻
As the hydroxide can gives the OH⁻ in water, it is considered as an Arrhenius's base