The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
a) find attached image 1
b) find attached image 2
Explanation :
The more stable radical is formed by a reaction with smaller bond dissociation energy.
since the bond dissociation for cleavage of the bond to form primary free radical is higher, more energy must be added to form it. This makes primary free radical higher in energy and therefore less stable than secondary free radical.
<u>Answer:</u> The products of the reaction will be 
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The general chemical equation for the single displacement reaction follows:

The given chemical equation follows:

Bromine element is more reactive than iodine element. Thus, can easily replace iodine from its chemical reaction.
Hence, the products of the reaction will be 
Answer:
Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
Explanation:
Volume of NaOH = 1.7 ml = 0.0017 L
Molarity of NaOH = 0.0811 M
Moles of NaOH = n
n = 0.0001378 mol

According to reaction, 2 mol of NaOH neutralize 1 mol of sulfuric acid.
Then 0.0001378 mol of NaOH will neutralize:
of sulfuric acid.
Concentration of sulfuric acid in the acid rain sample: x

Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
Answer:
The time required for the coating is 105 s
Explanation:
Zinc undergoes reduction reaction and absorbs two (2) electron ions.
The expression for the mass change at electrode
is given as :

where;
M = molar mass
Z = ions charge at electrodes
F = Faraday's constant
I = current
A = area
t = time
also;
=
; replacing that into above equation; we have:
---- equation (1)
where;
A = area
d = thickness
= density
From the above equation (1); The time required for coating can be calculated as;
![[ \frac{20 cm^2 *0.0025 cm*7.13g/cm^3}{65.38g/mol}*2 \frac{moles\ of \ electrons}{mole \ of \ Zn} * 9.65*10^4 \frac{C}{mole \ of \ electrons } ] = (20 A) t](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B20%20cm%5E2%20%2A0.0025%20cm%2A7.13g%2Fcm%5E3%7D%7B65.38g%2Fmol%7D%2A2%20%5Cfrac%7Bmoles%5C%20of%20%5C%20electrons%7D%7Bmole%20%5C%20of%20%5C%20Zn%7D%20%2A%209.65%2A10%5E4%20%5Cfrac%7BC%7D%7Bmole%20%5C%20of%20%5C%20electrons%20%7D%20%20%5D%20%3D%20%2820%20A%29%20t)

= 105 s