Answer:
- The total distance traveled is 28 inches.
- The displacement is 2 inches to the east.
Explanation:
Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector
pointing in the west direction, the ant start at position

Then, moves to

so, the distance traveled here is



after this, the ant travels to

so, the distance traveled here is



The total distance traveled will be:

The displacement is the final position vector minus the initial position vector:



This is 2 inches to the east.
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
Answer:
Answer:
1.1 x 10^9 ohm metre
Explanation:
diameter = 1.5 mm
length, l = 5 cm
Potential difference, V = 9 V
current, i = 230 micro Ampere = 230 x 10^-6 A
radius, r = diameter / 2 = 1.5 / 2 = 0.75 x 10^-3 m
Let the resistivity is ρ.
Area of crossection
A = πr² = 3.14 x 0.75 x 0.75 x 10^-6 = 1.766 x 10^-6 m^2
Use Ohm's law to find the value of resistance
V = i x R
9 = 230 x 10^-6 x R
R = 39130.4 ohm
Use the formula for the resistance



ρ = 1.1 x 10^9 ohm metre
Explanation:
To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s