The whole Activity , poem and paragraph is missing in the question.
Answer:
(1) Liquid A
(2) Solid A
Explanation:
Using this part of the given poem
Substances and mixtures behave differently,
During boiling and melting most especially
Boiling point of substance is fixed while mixture is not
Substance melts completely but mixture does not
The boiling point of the Pure substance remain fixed after reaching its boiling point this is shown by Liquid A
Solid A is melting completely so Solid A is a pure substance.
<span>(A)hydrochloric acid + silver nitrate
HCl(aq) + AgNO3(aq) -----> AgCl(s) +HNO3(aq)
</span><span>(B)hydrochloric acid + sodium hydroxide
</span><span>HCl(aq) + NaOH(aq) -----> NaCl(aq) + H2O(l)
</span><span>(C)calcium chloride + silver nitrate
CaCl2(aq) + AgNO3(aq) ----> </span>AgCl(s) +Ca(NO3)2(aq)
<span>(D)sodium chloride + silver nitrate
</span>NaCl(aq) + AgNO3(aq) ----> AgCl(s) +NaNO32(aq)
AgCl is a white precipitate.
In (B) no precipitate was formed, so answer is B.
Answer : The molarity of the chloride ion in the water is, 5.75 M
Explanation :
As we are given that 16.6 % chloride ion that means 16.6 grams of chloride ion present 100 grams of solution.
First we have to calculate the volume of solution.


Now we have to calculate the molarity of chloride ion.
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Thus, the molarity of the chloride ion in the water is, 5.75 M
Answer and Explanation:
The equation that depicts oxidation of neutral atom A is shown below:

This is because one species is losing electrons due to oxidation. The species possesses positively charged after losing electrons, the magnitude of which is proportional to the number of electrons lost.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
The equation that depicts the decline of neutral atom X is

It is how a cell gains electrons by reduction. The species obtains a negative charge upon possessing electrons, whose magnitude is equivalent to the amount of electrons gained.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
The solution for this problem would be:
The mass of P4O10 is computed by: 0.800 mol x 284 g/mol = 227g t = 15.0 s ( 1 min / 60 s) = 0.25 min
So solving for the rate will be mass over t = m/t = 227/0.25 = 908 g/min would be the answer for this problem.