Answer:
The only statement about monosaccharide structure which is true is b. (Monosaccharides can be classified according to the spatial arrangement of their atoms)
Explanation:
Monosaccharides are simple sugars that are classified according to the amount of carbon atoms and based on these numbers, we can call them trioses, pentoses and hexoses. They are molecules with aldehyde (aldose) or centone (ketose) groups that have more than one alcohol function, but which do not differ in their position (OH). They do not contain N, since their general formula is Cx (H2O) x. A 6-carbon monosaccharide is called hexose, since the pentose only has 5
I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>
<u>Answer:</u> The new concentration of lemonade is 3.90 M
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of lemonade solution = 2.66 M
Volume of solution = 473 mL
Putting values in equation 1, we get:

Now, calculating the new concentration of lemonade by using equation 1:
Moles of lemonade = 1.26 moles
Volume of solution = (473 - 150) mL = 323 mL
Putting values in equation 1, we get:

Hence, the new concentration of lemonade is 3.90 M
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
The whole Activity , poem and paragraph is missing in the question.
Answer:
(1) Liquid A
(2) Solid A
Explanation:
Using this part of the given poem
Substances and mixtures behave differently,
During boiling and melting most especially
Boiling point of substance is fixed while mixture is not
Substance melts completely but mixture does not
The boiling point of the Pure substance remain fixed after reaching its boiling point this is shown by Liquid A
Solid A is melting completely so Solid A is a pure substance.