Answer:
Since in a chloride ion, we have an additional electron
you might think that it will affect the mass but the mass of an electron is almost negligible so we will ignore that
Amount of ions in 1 mol = 6.022 * 10^23
Amount of ions in 0.486 moles = 0.486 * (6.022*10^23)
Amunt of ions in 0.486 moles = 2.9 * 10^23 ions
Hence, option 1 is correct
Answer:
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.
Explanation:
For comparing the mean absolute deviations of both data sets we have to calculate the mean absolute deviation for both data sets first,
So for city 1:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored as the deviation is the distance of value from the mean and it cannot be negative. For this purpose absolute is used)
The deviations will be added then.
So the mean absolute deviation for city 1 is 24 ..
For city 2:
Now to calculate the mean deviations mean will be subtracted from each data value. (Note: The minus sign is ignored)
The deviations will be added then.
So the MAD for city 2 is 11.33 ..
So,
The MAD of city 2 is less than the MAD for city 1, which means the average monthly temperature of city 2 vary less than the average monthly temperatures for City 1.
Answer: The stick model method
Answer:
d = 70.5 mm
Explanation:
given,
length of pipe = 305 m
discharge rate = 150 gal/min
pipe diameter = ?
1 gal/min = 6.30902 × 10⁻⁵ m³/s
150 gal/min = 150 × 6.30902 × 10⁻⁵ m³/s
= 9.46 × 10⁻³ m³/s


Q = A V



f = 0.048 from moody chart using P/D = 0.00015

d = 70.5 mm
Diameter of the pipe is equal to 70.5 mm
Answer:
Explanation:
The following equation relates to Born-Haber cycle

Where
is enthalpy of formation
S is enthalpy of sublimation
B is bond enthalpy
is ionisation enthalpy of metal
is electron affinity of non metal atom
is lattice energy
Substituting the given values we have
-435.7 = 79.2 + 1/2 x 242.8 + 418.7 - 348 +U_L
= - 707 KJ / mol