answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
2 years ago
8

Use the data table and compare your calculated predictions with the measured y positions. Record your results in the table below

. Describe any notable differences. Make a hypothesis about any differences.
Physics
1 answer:
-Dominant- [34]2 years ago
8 0

Answer:

0.3 s -0.4 m -0.57 m

0.5 s -1.2 m -1.27 m

0.7 s -2.3 m -2.4 m

Explanation:

You might be interested in
In order to hike around a portion of Lake Allatoona, a tour guide determines that he must take his group 150 m east, 60 m north,
SCORPION-xisa [38]

Answer:

100 meters, 54.5 East of North or 125.5 North of East.

Explanation:

Try drawing it out to get a better visual. Make sure that when you draw the arrows that you make a scale (for example: 1 cm = 10 meters). After drawing it out, draw a line from the origin/starting point and connect it to the end point from the "75 m west" arrow. Then, measure the line you drew and convert it back into meters. Lastly, measure the angle.

3 0
2 years ago
You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
kati45 [8]

Answer:

The  coefficient of kinetic friction  \mu_k =  0.724

Explanation:

From the question we are told that

   The  length of the lane is  l =  36.0 \  m

    The speed of the truck is  v  =  22.6\  m/s

     

Generally from the work-energy theorem we have that  

    \Delta KE  =   N  *  \mu_k *  l

Here N  is the normal force acting on the truck which is mathematically represented as

     \Delta KE is the change in kinetic energy which is mathematically represented as

        \Delta KE =  \frac{1}{2} *  m *  v^2

=>     \Delta KE =  0.5  *  m *  22.6^2

=>      \Delta KE =  255.38m

        255.38m =    m *  9.8  *  \mu_k *   36.0

=>     255.38  =    352.8  *  \mu_k

=>   \mu_k =  0.724

 

6 0
2 years ago
A person's height will increase from birth until about age 25, and it may decrease starting at about age 70. This is an example
dsp73
LOL idk sorry maybe it b! Oh wait it is !
5 0
2 years ago
Read 2 more answers
In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land
sattari [20]

Answer:

a) Impulse |J|= 219.4 kgm/s

b) Force F = 2672 N

Explanation:

Given

Height of fall h = 0.50 m

Mass M = 70 kg

Period of collision t = 0.082 s

Solution

The final velocity of the person v is zero since the person will come to rest.

The initial velocity of the person can be calculated by using the "law of conservation of energy".

Initial Kinetic energy = Final potential energy

\frac{1}{2} mu^2=mgh\\\\u = \sqrt{2gh} \\\\u = \sqrt{2 \times 9.81 \times 0.50} \\\\u = 3.13 m/s

a) Impulse

J = final momentum - initial momentum

J = mv -mu\\\\J = 0 - (70 \times 3.13)\\\\J = -219.2 kgm/s

Magnitude of impulse

|J| = 219.1 kgm/s

b) Force

F = \frac{J}{t} \\\\F = \frac{219.1}{0.082} \\\\F = 2672 N

4 0
2 years ago
A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the x-axis with a speed of 82.
MakcuM [25]

Answer:

The magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

Explanation:

Hi there!

The total momentum is calculated as the sum of the momenta of the pieces.

The momentum of each piece is calculated as follows:

p = m · v

Where:

p = momentum.

m =  mass.

v = velocity.

The momentum is a vector. The 200 g-piece flies along the x-axis then, its momentum will be:

p = (m · v, 0)

p = (0.200 kg · 82.0 m/s, 0)

p = (16.4 kg m/s, 0)

The 300 g-piece flies along the y-axis. Its momentum vector will be:

p =(0, m · v)

p = (0, 0.300 kg · 45.0 m/s)

p = (0, 13.5 kg m/s)

The total momentum is the sum of each momentum:

Total momentum = (16.4 kg m/s, 0) + (0, 13.5 kg m/s)

Total momentum = (16.4 kg m/s + 0, 0 + 13.5 kg m/s)

Total momentum = (16.4 kg m/s, 13.5 kg m/s)

The magnitude of the total momentum is calculated as follows:

|p| = \sqrt{(16.4 kgm/s)^2+(13.5 kg m/s)^2}= 21.2 kg m/s

The direction of the momentum vector is calculated using trigonometry:

cos θ = px/p

Where px is the horizontal component of the total momentum and p is the magnitude of the total momentum.

cos θ = 16.4 kg m/s / 21.2 kg m/s

θ = 39.3  (39.5° if we do not round the magnitude of the total momentum)

Then, the magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

 

6 0
2 years ago
Other questions:
  • A car drives around a racetrack for 30 seconds. what do you need to know to calculate the average velocity of the car?
    9·2 answers
  • The potential energy of a pair of hydrogen atoms separated by a large distance x is given by u(x)=−c6/x6, where c6 is a positive
    7·2 answers
  • When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
    7·1 answer
  • A typical male sprinter can maintain his maximum acceleration for 2.0 s, and his maximum speed is 10 m> s. After he reaches t
    10·1 answer
  • 7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
    5·1 answer
  • A ball of mass 5.0kg is lifted off the floor a distance of 1.7m. 1. What is the change in the gravitational potential energy of
    13·1 answer
  • The gas tank of Dave’s car has a capacity of 12 gallons. The tank was 38 full before Dave filled it to capacity. It cost him $2.
    8·2 answers
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • Tech A says that some electric actuators are positioned by an A/C ECU which checks the air flow with sensors. Tech B says that e
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!