answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
2 years ago
14

A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the x-axis with a speed of 82.

0 m/s. A second piece has a mass of 300 g and flies off along the y-axis with a speed of 45.0 m/s. What are the magnitude and direction of the total momentum of these two pieces?A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the -axis with a speed of 82.0 m/s. A second piece has a mass of 300 g and flies off along the -axis with a speed of 45.0 m/s. What are the magnitude and direction of the total momentum of these two pieces?361 kg·m/s at 0.983° from the x-axis361 kg·m/s at 56.3° from the x-axis93.5 kg·m/s at 28.8° from the x-axis21.2 kg·m/s at 39.5° from the x-axis21.2 kg·m/s at 56.3° from the x-axis
Physics
1 answer:
MakcuM [25]2 years ago
6 0

Answer:

The magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

Explanation:

Hi there!

The total momentum is calculated as the sum of the momenta of the pieces.

The momentum of each piece is calculated as follows:

p = m · v

Where:

p = momentum.

m =  mass.

v = velocity.

The momentum is a vector. The 200 g-piece flies along the x-axis then, its momentum will be:

p = (m · v, 0)

p = (0.200 kg · 82.0 m/s, 0)

p = (16.4 kg m/s, 0)

The 300 g-piece flies along the y-axis. Its momentum vector will be:

p =(0, m · v)

p = (0, 0.300 kg · 45.0 m/s)

p = (0, 13.5 kg m/s)

The total momentum is the sum of each momentum:

Total momentum = (16.4 kg m/s, 0) + (0, 13.5 kg m/s)

Total momentum = (16.4 kg m/s + 0, 0 + 13.5 kg m/s)

Total momentum = (16.4 kg m/s, 13.5 kg m/s)

The magnitude of the total momentum is calculated as follows:

|p| = \sqrt{(16.4 kgm/s)^2+(13.5 kg m/s)^2}= 21.2 kg m/s

The direction of the momentum vector is calculated using trigonometry:

cos θ = px/p

Where px is the horizontal component of the total momentum and p is the magnitude of the total momentum.

cos θ = 16.4 kg m/s / 21.2 kg m/s

θ = 39.3  (39.5° if we do not round the magnitude of the total momentum)

Then, the magnitude of the total momentum is 21.2 kg m/s and its direction is 39.5° from the x-axis.

 

You might be interested in
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
A 4.00-kg box sits atop a 10.0-kg box on a horizontal table. The coefficient of kinetic friction between the two boxes and betwe
natta225 [31]
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.


Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
4 0
2 years ago
The diagram shows two vectors that point west and north. What is the magnitude of the resultant vector? 13 miles 17 miles 60 mil
Kipish [7]
Using the formula A squared plus B squared equals C squared, we can find the solution by substituting 5 for A and 12 for B.

By squaring 5, we get 25, and by squaring 12, we get 144. Adding these, we get 169. The square root of this is 13.
6 0
2 years ago
Read 2 more answers
During a hurricane, the atmospheric pressure inside a house may blow off the roof because of the reduced pressure outside. If ai
m_a_m_a [10]

Answer:

817.5 Pa

Explanation:

From Bernoulli's equation, considering thst there is no height difference then

P1+½d(v1)²=P2+½d(v2)²

P1-P2=½d(v2²-v1²)

∆P=½d(v2²-v1²)

Where P represent pressure, d is density and v is velocity. Subscripts 1 and 2 represent inside and outside. ∆P is tge change in pressure

Given the speed at roof top as 128 km/h, we convert it to m/s as follows

128*1000/3600=35.555555555555=35.56 m/s

Velocity at the bottom of roof is 0 m/s

Density is given as 1.293 kg/m³

∆P=½*1.293*(35.56²-0)=817.5 Pa

5 0
2 years ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
2 years ago
Other questions:
  • Isabella drops a pen off her balcony by accident while celebrating the successful completion of a physics problem. assuming air
    6·1 answer
  • A box is at rest on a ramp at an incline of 22°. The normal force on the box is 538 N.
    14·2 answers
  • At constant temperature, the volume of the container that a sample of nitrogen gas is in is doubled. As a result the pressure of
    5·1 answer
  • . A 1.50kg mass on a spring has a displacement as a function of time given by the equation: x(t) = (7.40cm)cos[(4.16s-1)t – 2.42
    11·1 answer
  • (a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500 - μC charge and flies due west at a sp
    6·1 answer
  • The temperature and pressure at the surface of Mars during a Martian spring day were determined to be -50 °C and 900 Pa, respect
    13·2 answers
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straig
    6·1 answer
  • The operator of a space station observes a space vehicle approaching at a constant speed v. The operator sends a light signal at
    13·1 answer
  • A statue and a coin are made out of exactly the same materials. Which property would you claim will likely be the same for both
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!