answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
2 years ago
7

Older televisions display a picture using a device called a cathode ray tube, where electrons are emitted at high speed and coll

ide with a phosphorescent surface, causing light to be emitted. The paths of the electrons are altered by magnetic fields. Consider one such electron that is emitted with an initial velocity of 2.00 x10^7 m/s in the horizontal direction when magnetic forces deflect the electron with a vertically upward acceleration of 5.25 x 10^15 m/s^2. The phosphorescent screen is a horizontal distance of 6 cm away from the point where the electron is emitted.
Required:
a. How much time does the electron take to travel from the emission point to the screen?
b. How far does the electron travel vertically before it hits the screen?
Physics
1 answer:
Vaselesa [24]2 years ago
5 0

Answer:

a) 3*10^{-9}\ s

b) 2.36 cm

Explanation:

a) The horizontal distance = x = 6 cm

1 cm = 0.01 m

6 cm = 6 cm * 0.01 m/cm = 0.6 m

Therefore the time taken (t) by the electron  to travel from the emission point to the screen can be gotten from:

x = t * V_i

V_i=initial\ velocity=2*10^7\ m/s

x=tV_i\\\\t=\frac{x}{V_i}\\ \\t=\frac{0.06}{2*10^7}\\ \\t=3*10^{-9}\ m/s

b) The vertical distance (y) traveled by the electon before it hits the screen is given by:

y=\frac{1}{2}at^2\\ \\a=upward\ acceleration=5.25*10^{15}\ m/s^2\\\\Substituting:\\\\y=\frac{1}{2}*5.25*10^{15}*  (3*10^{-9})\\\\y=0.0236\ m\\y=2.36\ cm

You might be interested in
What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect?
erma4kov [3.2K]

<span>E = h x f </span>

<span>. . . then : </span>

<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>


<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>

<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
4 0
1 year ago
Read 2 more answers
A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
kaheart [24]

Answer:

(a). The magnitude of the uniform magnetic field is 10.02 μT

(b). The the magnitude of the total magnetic field is 10.78 μT.

Explanation:

Given that,

Number of turns = 210

Radius = 5 cm

Current = 38 mA

Current in the wire = 500 mA

We need to calculate the magnetic field inside a coil

Using formula of magnetic field

B=\mu_{0} ni

Put the value into the formula

B_{c}=4\pi\times10^{-7}\times210\times38\times10^{-3}

B_{c}=0.0000100\ T

B_{c}=10.02\times10^{-6}\ T

Now a straight wire is inserted into the coil that carries 500 mA. It travels down the central axis of the coil

Distance d=\dfrac{5}{2}

d=2.5\ cm

We need to calculate the magnetic field from the straight wire

Using formula of magnetic field

B_{w}=\dfrac{\mu_{0}I}{2\pi d}

Put the value into the formula

B_{w}=\dfrac{4\pi\times10^{-7}\times500\times10^{-3}}{2\times\pi\times2.5\times10^{-2}}

B_{w}=4.0\times10^{-6}\ T

This field is perpendicular to the wire.

The magnitude of magnetic field is

B=\sqrt{B_{c}^2+B_{w}^2}

B=\sqrt{(10.02\times10^{-6})^2+(4.0\times10^{-6})^2}

B=0.00001078\ T

B=10.78\times10^{-6}\ T

B=10.78\ \mu\ T

Hence, (a). The magnitude of the uniform magnetic field is 10.02 μT

(b). The the magnitude of the total magnetic field is 10.78 μT.

6 0
2 years ago
A 5.00-kg ball is hanging from a long but very light flexible wire when it is struck by a 1.50-kg stone traveling horizontally t
devlian [24]

consider the right direction as positive and left direction as negative.

M = mass of the ball = 5 kg

m = mass of stone = 1.50 kg

V_{bi} = initial velocity of the ball before collision = 0 m/s

V_{si} = initial velocity of the stone before collision = 12 m/s

V_{bf} = final velocity of the ball after collision = ?

V_{sf} = final velocity of the stone after collision = - 8.50 m/s

using conservation of momentum

MV_{bi} + mV_{si} = MV_{bf} + mV_{sf}

(5) (0) + (1.5) (12) = 5 V_{bf} + (1.50) (- 8.50)

V_{bf} = 6.15 m/s

h = height gained by the ball

using conservation of energy

Potential energy gained by ball at Top = kinetic energy at the bottom

Mgh = (0.5) MV_{bf}^{2}

(9.8) h = (0.5) (6.15)²

h = 1.93 m

8 0
2 years ago
Read 2 more answers
WILL GIVE BRAINLIEST AND 100 POINTS! NEED THIS ASAP!
lorasvet [3.4K]

Answer:

6.57, 1.64, .88

Explanation:

all correct on edge

8 0
2 years ago
When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
Wittaler [7]

Answer:

W_f = 148.17J

Explanation:

During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.

Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

N=\frac{mg}{2} = \frac{90*9.8}{2} = 441N

The work done is given by the friction force and the distance traveled,

W_f = fd = \mu_k Nd

Where \mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)

The thermal energy released through the work done is,

W_f = 148.17J

3 0
2 years ago
Other questions:
  • Baseballs pitched by a machine have a horizontal velocity of 30 meters/second. The machine accelerates the baseball from 0 meter
    9·1 answer
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    14·1 answer
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu
    12·1 answer
  • In which atmosphere layer does 80 percent of the gas in the atmosphere<br> reside?
    13·2 answers
  • While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The fron
    7·1 answer
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
  • A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!