Answer:
Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M
Explanation:
The equilibriums that take place are:
Cu⁺² + 2OH⁻ ↔ Cu(OH)₂(s) ksp = 2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
Co⁺² + 2OH⁻ ↔ Co(OH)₂(s) ksp = 1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
Keep in mind that <em>the concentration of each ion is halved </em>because of the dilution when mixing the solutions.
For Cu⁺²:
2.2x10⁻²⁰ = [Cu⁺²]*[OH⁻]²
2.2x10⁻²⁰ = 0.25 M*[OH⁻]²
[OH⁻] = 2.97x10⁻¹⁰ M
For Co⁺²:
1.3x10⁻¹⁵ = [Co⁺²]*[OH⁻]²
1.3x10⁻¹⁵ = 0.25 M*[OH⁻]²
[OH⁻] = 7.21x10⁻⁸ M
<u>Because Copper requires less concentration of OH⁻ than Cobalt</u>, Cu(OH)₂ will precipitate first, with [OH⁻] = 2.97x10⁻¹⁰ M
Answer:
the candle is still solid..................in this case, yes!
Explanation:
it is still solid because the molecules are packed together tighter than the molecules in a liquid or gas.
Answer:
He changed more than one variable at a time
Explanation:
The answer for your question is <span>No. This is because in given conditions, it is not the most stable form of oxygen's element. It will not equate into zero because there will be charge remained after balancing the equation.
</span>