answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
2 years ago
4

A climber of mass m slides down a vertical rope with an average acceleration a. What is the average frictional force exerted by

the rope on the climber?
Physics
1 answer:
Ganezh [65]2 years ago
7 0

Answer:

m(g - a)

Explanation:

Since he slides with a mass 'm' and acceleration of "a", it means he is sliding in the position of gravity. Thus, Force = ma

Now, the force due to gravity = mg

The overall acceleration of the climber is downward along the rope. So "ma" is negative. Now, the only external forces acting on the person will be the force of gravity acting downward (W = mg) and the supporting Frictional Force F_f.

Thus, the net average frictional force of exerted by the rope on the climber will be;

mg - F_f - ma = 0

F_f = mg - ma

F_f = m(g - a)

You might be interested in
A cylindrical tank of methanol has a mass of 40 kgand a volume of 51 L. Determine the methanol’s weight, density,and specific gr
mezya [45]

Answer:

Weight  W = 392.4 N

Density  \rho = 784.31 \frac{kg}{m^{3} }

Specific gravity S = 0.78431

Force required F = 10 N

Explanation:

Given data

Mass (m) = 40 kg

Volume (V) = 0.051 m^{3}

Weight W = m × g

⇒ W = 40 × 9.81

⇒ W = 392.4 N

This is the weight of the methanol.

Density \rho = \frac{mass }{volume}

⇒ \rho = \frac{40}{0.051}

⇒ \rho = 784.31 \frac{kg}{m^{3} }

This is the density of the methanol.

Specific gravity (S) = \frac{\rho}{\rho_{water} }

⇒ S = \frac{784.31}{1000}

⇒ S = 0.78431

This is the specific gravity of the methanol.

Force needed to accelerate this tank F = ma

⇒ F = 40 × 0.25

⇒ F = 10 N

This is the force required to accelerate the tank.

4 0
2 years ago
You are called as an expert witness to analyze the following auto accident: Car B, of mass 2000 kg, was stopped at a red light w
OLga [1]

Answer:

a). va=17.23 \frac{m}{s} or 38.54 mph

b). v=38.54 mph and limit is 35 mph

c). Completely inelastic

d). Eka=192.967 kJ

Ekt=76.071 kJ

Explanation:

m_{a}=1300kg\\m_{b}=2000kg\\x_{f}=7.25m\\u_{k}=0.65

The motion is an inelastic collision so

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

The force of the motion is contrarest by the force of friction so

F-F_{uk} =0\\F=F_{uk}\\F_{uk}=u_{k}*m*g\\F=m*a\\a=\frac{F}{m}\\ a=\frac{F_{uk}}{m}\\a=\frac{u_{k}*m*g}{m}\\a=u_{k}*g\\a=0.65*9.8\frac{m}{s^{2}} \\a=6.39\frac{m}{s^{2}}

Now with the acceleration can find the time and the velocity final that make the distance 7.25m being united

x_{f}=x_{o}+v_{o}*t+2*a*t^{2}\\x_{o}=0\\v_{o}=0\\x_{f}=2*a*t^{2}\\t^{2}=\frac{x_{f}}{2*a}\\t=\sqrt{\frac{7.25m}{6.37\frac{m}{s^{2} } } } \\t=1.06s

So the velocity final can be find using this time

v_{f}=v_{o}+a*t\\v_{o}=0\\v_{f}=6.37\frac{m}{s^{2} } *1.06s\\v_{f}=6.79 \frac{m}{s}

a).

Replacing in the first equation the final velocity can find the initial velocity

m_{a}*v_{a}+m_{b}*v_{b}=(m_{a}+m_{b})*v_{f}

v_{b}=0

v_{a}= \frac{(m_{a}+m_{b)*v_{f}}}{m_{a}}\\v_{a}= \frac{(1300+2000)*6.37}{1300}\\v_{a}=17.23 \frac{m}{s}

b).

35mph*\frac{1m}{0.000621371mi} *\frac{1h}{3600s}=15.646\frac{m}{s}

Velocity limit in m/s is 15.646 m/s and the initial velocity is 17.23 m/s

so is exceeding the speed limit in about 1.58 m/s

or in miles per hour

3.5 mph

c).

The collision is complete inelastic because any mass can be returned to the original mass, so even they are no the same mass however in the moment they move the distance 7.25m as a same mass the motion is considered completely inelastic

d).

Ek=\frac{1}{2}*m*(v)^{2}\\  Eka=\frac{1}{2}*1300kg*(17.23\frac{m}{s})^{2}\\Eka=192.967 kJ\\Ekt=\frac{1}{2}*m*(v)^{2}\\Ekt=\frac{1}{2}*3300kg*(6.79\frac{m}{s})^{2}\\Ekt=76.071 kJ

8 0
2 years ago
A 23.5 kg object travels a distance of 85 m in 30 s. Find the momentum. (Hint: you must find speed first)
kherson [118]
Speed = 85/30 m/s
Momentum = 23.5 * 85/30 = ....
4 0
2 years ago
A real heat engine operates between temperatures tc and th. during a certain time, an amount qc of heat is released to the cold
tino4ka555 [31]

q_{c} = Heat released to cold reservoir

q_{h} = Heat released to hot reservoir

W_{max} = maximum amount of work

t_{c} = temperature of cold reservoir

t_{h} = temperature of hot reservoir

we know that

\frac{q_{c}}{q_{h}}=\frac{t_{c}}{t_{h}}

q_{h} = (\frac{t_{h}}{t_{c}})q_{c}                                eq-1

maximum work is given as

W_{max} = q_{h} - q_{c}

using eq-1

W_{max} =  (\frac{t_{h}}{t_{c}})q_{c} - q_{c}



6 0
2 years ago
When a student stands on a rotating table,the frictional force exerted on the student by the table is?
lakkis [162]

Answer:

Less

Explanation:

because static friction is more than rolling friction

7 0
2 years ago
Other questions:
  • A 4.00-kg box sits atop a 10.0-kg box on a horizontal table. The coefficient of kinetic friction between the two boxes and betwe
    12·1 answer
  • Two negative charges that are both -0.3C push each other apart with a force of 19.2 N. How far apart are the two charges?
    15·1 answer
  • Use the formula h = −16t2 + v0t. (if an answer does not exist, enter dne.) a ball is thrown straight upward at an initial speed
    11·1 answer
  • A toy rocket is shot straight up into the air with an initial speed of 45.0 m/s how long does it takes for the rocket to reach i
    12·2 answers
  • Why does a clear stream always appear to be shallower than it actually is?
    14·2 answers
  • In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class t
    8·1 answer
  • A mine car, whose mass is 440kg, rolls at a speed of 0.50m/s on ahorizontal track, as the drawing shows. A 150kg chunk of coalha
    13·1 answer
  • Which of the following are scalar quantities? select all that apply
    10·1 answer
  • A charge of 4.9 x 10-11 C is to be stored on each plate of a parallel-plate capacitor having an area of 150 mm2 and a plate sepa
    5·1 answer
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!