[H3O+][OH-] = 4.5 x 10^-15
[H3O+] = [OH-] = 6.7 x 10^-8 M
Explanation: do the math
Answer:
The enthlapy of solution is -55.23 kJ/mol.
Explanation:
Mass of water = m
Density of water = 1 g/mL
Volume of water = 50.0 mL
m = Density of water × Volume of water = 1 g/mL × 50.0 mL=50.0 g
Change in temperature of the water ,ΔT= 27.0°C - 22.3°C = 4.7°C
Heat capacity of water,c =4.186 J/g°C
Heat gained by the water when an unknown compound is dissolved be Q
Q= mcΔT

heat released when 0.9775 grams of an unknown compound is dissolved in water will be same as that heat gained by water.
Q'=-Q
Q'= -983.71 J =-0.98371 kJ
Moles of unknown compound = 
The enthlapy of solution :


The enthlapy of solution is -55.23 kJ/mol.
Answer:
Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho
Answer:
NH₃/NH₄Cl
Explanation:
We can calculate the pH of a buffer using the Henderson-Hasselbalch's equation.
![pH=pKa+log\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
If the concentration of the acid is equal to that of the base, the pH will be equal to the pKa of the buffer. The optimum range of work of pH is pKa ± 1.
Let's consider the following buffers and their pKa.
- CH₃COONa/CH3COOH (pKa = 4.74)
The optimum buffer is NH₃/NH₄Cl.